ProSoft

TECHNOLOGY

—— - o

™~ o
AN i

PROGRAMMABLE
359 MODULES

iINRAX
MVI-ADM

'C' Programmable

Where Automation Connects.

'C' Programmable Application

Development Module

FebruargQ 2013

DEVELOPER'S GUIDE

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about our products, documentation, or support, please write or call us.

ProSoft Technology

5201 Truxtun Ave., 3rd Floor
Bakersfield, CA 93309

+1 (661) 716-5100

+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2013 ProSoft Technology, Inc., all rights reserved.

MVI-ADM Developer's Guide

February 20, 2013

ProSoft Technology ®, ProLinx ®, inRAx ®, ProTalk ®, and RadioLinx ® are Registered Trademarks of ProSoft
Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD-ROM,
and are available at no charge from our web site: www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2013 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.
North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

Latin America: +1.281.298.9109

http://www.prosoft-technology.com/

Important Installation Instructions

Power, Input, and Output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods, Article 501-4 (b)
of the National Electrical Code, NFPA 70 for installation in the U.S., or as specified in Section 18-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority having jurisdiction. The following
warnings must be heeded:

A WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR
CLASS I, DIV. 2;

B WARNING - EXPLOSION HAZARD - WHEN IN HAZARDOUS LOCATIONS, TURN OFF POWER BEFORE
REPLACING OR WIRING MODULES

C WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

D THIS DEVICE SHALL BE POWERED BY CLASS 2 OUTPUTS ONLY.

MVI (Multi Vendor Interface) Modules

WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT - RISQUE D'EXPLOSION - AVANT DE DECONNECTER L'EQUIPEMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX.

Warnings

North America Warnings

A Warning - Explosion Hazard - Substitution of components may impair suitability for Class |, Division 2.

B Warning - Explosion Hazard - When in Hazardous Locations, turn off power before replacing or rewiring
modules.
Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is
known to be nonhazardous.

C Suitable for use in Class I, division 2 Groups A, B, C and D Hazardous Locations or Non-Hazardous Locations.

ATEX Warnings and Conditions of Safe Usage:
Power, Input, and Output (I/O) wiring must be in accordance with the authority having jurisdiction

A Warning - Explosion Hazard - When in hazardous locations, turn off power before replacing or wiring modules.

B Warning - Explosion Hazard - Do not disconnect equipment unless power has been switched off or the area is
known to be non-hazardous.

C These products are intended to be mounted in an IP54 enclosure. The devices shall provide external means to
prevent the rated voltage being exceeded by transient disturbances of more than 40%. This device must be used
only with ATEX certified backplanes.

D DO NOT OPEN WHEN ENERGIZED.

Electrical Ratings

Backplane Current Load: 800 mA @ 5V DC; 3mA @ 24V DC

Operating Temperature: 0 to 60°C (32 to 140°F)

Storage Temperature: -40 to 85°C (-40 to 185°F)

Shock: 30g Operational; 50g non-operational; Vibration: 5 g from 10 to 150 Hz

Relative Humidity 5% to 95% (non-condensing)

All phase conductor sizes must be at least 1.3 mm(squared) and all earth ground conductors must be at least
4mm(squared).

I > >

Markings MVI56, MVI169, PTQ

CE EMC-EN61326-1:2006; EN6100-6-4:2007
CSA/cUL C22.2 No. 213-1987
CSA CB Certified IEC61010
ATEX EN60079-0 Category 3, Zone 2
EN60079-15
& 8 (€ P
C s
243333 MEOQ6

Markings MVI146, MVI71

ANSI / ISA ISA 12.12.01 Class | Division 2, GPs A, B, C, D
CSA/cUL C22.2 No. 213-1987
CSA CB Certified IEC61010
ATEX EN60079-0 Category 3, Zone 2
EN60079-15
€ C€®-
243333

Warning: This module is notsatappale! Always remove power from the rack before inserting or rel 10ving this
module, or damage may result to the module, the processor, or other connected devices.

Battery Life Advisory

The MVI146, MVI56, MVI56E, MVI169, and MVI71 modules use a rechargeable Lithium Vanadium Pentoxide battery to
backup the real-time clock and CMOS. The battery should last for the life of the module. The module must be
powered for approximately twenty hours before the battery becomes fully charged. After it is fully charged, the battery
provides backup power for the CMOS setup and the real-time clock for approximately 21 days. When the battery is
fully discharged, the module will revert to the default BIOS and clock settings.

Note:The battery is nseureplaceable.

MVIADMDXL' Programmable Contents

'C' Programmable Application Development Module Developer's Guide

Contents

YOUN FEEADACK PIBASE......cciiiiiiee ittt ettt e et e e et e e e s snbe e e e nnbee e e e nneeas 2

10701 (=Y a1 TR od P LT RSP 2

Important Installation INSTIUCLIONSociiiiiiii e e e s e r e e e e e s e s anrennees 3

MVI (Multi Vendor INterface) MOAUIESccuuiiiiiiiie ettt e e e e e e e e e e s st e eeeaeeesannnnes 3

RAT =V 11 o SRR 3

BAttEry LIifE ACVISOIYeiiiiiiiieiitiie ettt et e e skt e skt e et e s sbe e e e s nbn e e e s annneee s 4

1 Introduction 13

1.1 OPErAtiNg SYSTEIM ..cciiiiiiiieiiiiie ettt e et e e et e e e anbe e e e e nnes 13

2 Preparing the MVI-ADM Module 15

21 PACKAGE CONENESeeiiiiiiiii et e s 16

2.2 Recommended Compact Flash (CF) Cards.........cccouuueieiiiiiieiiiiee e 17

2.3 Jumper Locations and SEettiNgSuvviiiiiiiiiiiiiiie e 18

2.3.1 Y (8] O 10 1] o 1= PSRRI 18

2.3.2 Port 1 and Port 2 JUMPENIS ... 18

2.4 Cable CONNEBCLIONS ...t e e s e e e e e e e e e e 19

24.1 RS-232 Configuration/Debug POrt ..., 19

2.4.2 RS-232 Application POrt(S)......cccoeeieiieiie e 19

243 RS-422 ... 22

244 RS-485 APPLICALION POIL(S) .. eieierieieiiiiiie ittt sttt 22

245 DB9 to RJ45 Adaptor (Cable 14)eoiiiiiiiiiiie et 23

3 Understanding the MVI-ADM API 25

3.1 Y o I 1 o = 4 = PR 26

3.1.1 Calling CONVENTION ...ttt 26

3.1.2 L 1= T= o L=l SO PRE 26

3.1.3 SAMPIE COUR.... et 26

3.1.4 Multi-threading Considerationsccccoee i 27

3.2 Development TOOIS ... 28

3.3 Theory Of OPErationcccoooeiiiieice e 29

3.3.1 ADM AP .ottt r e 29

3.4 ADM FUNCHONAI BIOCKScooiiiiiiieiie ettt 30

3.4.1 D= = Vo - = SRR 30

3.4.2 Backplane ComMMUNICALIONScioiiuiiieiiiiie ettt 30

3.4.3 Serial COMMUNICALIONSvviiiiieeiiiiieiie e et ee e e e e e s e e e e e s e ssneerereaeeeeeannneeeeees 53

3.4.4 Y =T o T o o I o P PRSPPI 53

3.45 D= o1 o o O o PP PP TPPP 54

3.4.6 YAVl {0 T o PP TUPRP 54

3.4.7 COMIMUAIV.C ettt e e e ettt e e e e e st bbbt e e e e e e e snnbebeeeeaeeeeaannbbeneeas 56

3.4.8 Using Compact FIash DISKSeoiiiiiiiiiiiiee e 58

35 ADM AP AICRITECIUIE ...eiiiiiii ittt e e e e e 59

3.6 ADM APL FIIES ...ttt st b e s 60

3.6.1 ADM INtEIfACE SIIUCTUIE ...ttt e e e e s e eeaaa e as 60

3.7 BaCKPIane APT FlES ...t 64

3.7.1 Backplane AP ArChItECIUIe.uiii e 64

ProSoft Technology, Inc. Page 5 of 342

February 20, 2013

Contents MVIADMDZXL' Programmable

Developer's Guide '‘C'Programmable Application Development Module
3.8 SEHAI AP FIIES .ottt s a et 66
3.8.1 Serial APl ArChITECIUIEeiiiiiiiie e s 66
3.9 Side-CONNECE AP FIlES ...ttt e e e e eeees 67
3.9.1 Side-Connect API ArChitECIUIEcooiiiiiiiiiee et 67
3.9.2 D= L= R I =10) = SO PP PPURRRTN 67
4 Setting Up Your Development Environment 69
4.1 Setting Up YOUr COMPIIET ...t 70
41.1 Configuring Digital Mars C++ 8.49.......coiiiiiiiiiiic et 70
41.2 Configuring Borland C++5.02ccoiiiiiiiiiieie et e e e e 80
4.2 Setting UP WINIMAGEoooiiiiiii ettt st e e s 87
4.3 Installing and Configuring the ModUIeooociiiiirii e 88
4.3.1 Using Side-Connect (Requires Side-Connect Adapter) (MVI71)ccccccveveeriinns 88
5 Programming the Module 91
51 ROM Disk CONfIQUIALIONevvieiiieiiiiiiieieeeseesseessseeeseeesesaesssssssssesrsresseeserersrerrrerrrene 92
511 CONFIG.SYS Fl ...eeiiieiiiiie ettt st e e e s nsaee s 92
51.2 ComMMANT INEEIPIELET ...ttt anneee s 94
5.1.3 Sample ROM DiSK IMAGEeeiiiiiiiiieiiiiie ettt 95
5.2 Creating 8 ROM DiSK IMaAQE......ccoiiuiiiiiiiiiiieiiiiie ettt 97
5.2.1 WINIMAGE: Windows Disk Image BUIldErccooiiiiiiiiiiieiiecceieee e 97
5.3 Y Y L 1 5 N 99
54 MV SYStEM BIOS SEEUP ...evvriiiieeiieiiriiee ittt r e e s e 101
5.5 DebUQQING Srat@QIESuuvuiuieeeeieieieieeieeeeereeeeeeeeaeeeerererererrrreerrrrrrrrrr——————————————. 102
6 Creating Ladder Logic 103
6.1 Y AL = Vo (o = o 1o T o PPPPPPIN 104
6.1.1 MAIN ROULINE ...ttt e e e e e e e e e e e e s anees 104
6.2 Y AV T =T (o [=T o 1o T o PP PPPPPPPINS 105
6.2.1 MAIN ROULINE ...ttt e e e e e e e e e e e e s anees 105
6.2.2 REAA ROULINE ...ttt e e e e s e et e e e e e e s e s nnrneeeeeeeeeaannes 105
6.3 MVIB9 LAAEr LOGIC......ueeieiiiiiie ettt 106
6.3.1 Y= U T o 10] 1= PR 106
6.3.2 REAA ROULINE ...ttt e e e e s e et re e e e e e s e s nnteeeeeeeeeeannnes 107
6.3.3 WIHIEE ROULINEeeeiiee ettt et e e e e e et e e e e e e st e e e e e e e e snnnneeees 108
6.4 MVI7L LAAAEE LOGIC ... tviiieiiiiee ettt ettt 109
6.4.1 Sample Ladder LOGQIC s 109
6.5 AL = Vo (o 1= o e T [P PPPPPPINS 115
6.5.1 MAIN ROULINE ...ttt e e e e e ee e e e e e e s anees 115
6.5.2 ADIM L.ttt e et e ettt e e e tae e e e atae e e e s baaeeearaeeee et 116
7 Application Development Function Library - ADM API 119
7.1 ADM API FUNCHONS ...ttt ettt a et e e e e e e s snnaeeee s 120
7.2 ADM API Initialization FUNCLIONS........ccoiiiiiiiiiiieee e 123
AADIM OB ..ttt ettt e e e a e e e et e e e e e a e e e e e e s 123
F B L 1 o] P PP PP 124
7.3 ADM API Debug POrt FUNCHONSouviiiiiiiiie it 125
ADM_PrOCESSDEDUP -..ceiiiitiiiie ittt e ettt et e e bt e b e e e e e annaeee s 125
Page 6 of 342 ProSoft Technology, Inc.

February 20, 2013

MVIADMDXL' Programmable Contents

'C' Programmable Application Development Module Developer's Guide
ADM_DAWESENACTeeiiie ettt re e e nnneenns 126
ADM_DAWIERECVCT ...ttt e e nn e s ne e e nnneenns 127
ADM_DAWTIESENUDALA.eeeiieeeeeiiiiiieeei e e ettt e e e e e s e et eeee e e s s abe e e eeaaeeeaanbareeeaaeesssanrneeeeas 128
ADM_DAWTIERECVDALA. ... eteeiiiee ettt e ettt e e e e e s ettt e e e e e s e anbareeeeaeeeesannrneeeeas 129
F YD Y O] o] = o o | SO ERP TSP 130
ADM_CRECKDBPOI ...ttt e ettt e e e e e s ettt e e e e e s s e nbabeeeeaeeesannneeneeeas 131

7.4 ADM API| Database FUNCLONScooiiiiiiiiiiiie et a e 132
F 1Y 3 =T @] o 1= o PSP PR PPRR TR 132
ADM_DBCIOSE ...ttt ettt ettt ettt E e s e et nn e re e nnneenn 133
F Y = 74 = o F PP R PTRPPRRTRI 134
ADM_DBGEIBIL ...ttt 135
ADM_DBSEBIL ...ccuveeeiireeeiteee sttt nnne e 136
ADM_DBCIRAIBILeeiutieiiiiie ittt ettt r e n e e nnne e 137
ADM_DBGEIBYLEcoutiieitiie ettt etttk ettt et e et b et he e et e e e b et aabe e e be e e ntae e abeeenaneeaa 138
ADM_DBSEIBYLEcciutiiiiiiieiiie ettt ettt ettt ettt et et e e b et shb e e aabe e e b e e e anbe e e bt e e nteeeabeeeaaneeaa 139
ADM_DBGEIWOIT.uteieiiie ittt ettt ettt ettt ettt e be e ste e e st e e e sbb e e sabeesbeeessbeeabeeasbbeesnbeeesaneean 140
F YD Y] 2 ST A1V o] o PR SSS 141
ADM_DBGEELONG ..1eeetiieiiiiitie ettt ettt e et e et e e et e e e 142
ADM _ DB SEILONG. .. 1ettttteeiiitt ettt e et e e e et e e e n e 143
ADM_DBGEIFIOALcuveiiiiieiiee ettt ettt e et b e be e rr e sre e e nnneenn 144
ADM_DBSELFIOAL......c..teiiitie ittt ettt b e b n e are e nnneenn 145
ADM_DBGEIDFIOAL. ... eiiiiieiiee ettt re e nne e 146
ADM_DBSEIDFIOALeeiitieiiee ettt bbbt re e nane e 147
ADM_DBGEIBUTF ..ottt re e nane e 148
ADM_DBSEIBUTceeitiiiiieie ettt b e st r e re e nnneenn 149
ADM _ DB GEIREGS ... eettteiiittt ettt a e et e e e s s 150
ADM_DBSEIREGS ... eetiieiiiiitttii ettt e e et e e 151
ADM_DBGEEISIIING ..ttt ettt ettt ettt e e et e e bt e e e b e et e e et e e e e e e e e 152
ADM_DBSEESIING ...eeeittieeeiitite ettt ettt e ettt e e e r bt e e e s bt e e e e e et e e e e e e e e nreas 153
ADM_DBSWEAPWOIT ...ttt etttk e e e et et e e e sa b e e e e e asb e e e e et e e e e e anbe e e e aneeas 154
ADM_DBSWEAPDWOIG........eeieiiiieiiie ettt ettt s e sie e e ssb e s b e e snbeeabeeesbneesreeesnneenns 155
ADM_GEIDBECPLI ...ttt ettt st h et b e ah e be e bn e sbe e naneena 156
ADM _GEIDBIDIE ..ttt bttt b e b e aa e e b e e nbn e sbe e e nnnee e 157
ADM_GEIDBINT ...ttt bttt b e b e e e be e nbn e e sbe e e nnnee e 158
ADM _DBCRANGEAuuiiiiiiiiiiiiiii s 159
ADM_DBBItCNANGEAuiiiiiiiiiiiiii s 160
ADM _DBOR_BYLEceuieieeieieeeeeeeeeeee e e e s s st ettt et an s e s 161
ADM _DBNOR _BYEE.......cucuiiiiiieeeeeeeeeeeee e e s s sttt ettt essseenenen e s 162
ADM _DBAND_BYEEc.ooueiiiiieeeeeeeeeee e s e s s es ettt ettt ee e enen e e 163
ADM _DBNAND _BYLE......coiiieieeeeeeeeieeeee e te e s s s s s ettt ettt te e ese et essesesenen e s e 164
ADM _DBXOR_BYIEucucuieiieeeeeeeeeeee e s s e st ettt ettt eenanen e s 165
ADM_DBXNOR_BYLE ..ot ee e s sttt s s eenenen e s 166

7.5 ADM API ClOCK FUNCHONS ...ttt 167
ADM _STAMTIMIEL L.ttt nan 167
ADM _CRECKTIMIBT ... ittt s 168

7.6 ADM API Backplane FUNCLIONScooiiiiiiiieieecceecee s 169
F D 1Y 21 (0] o= o H PP PR P PP PUPRPUPRTRP 169
ADM_BECIOSE ..ottt ettt ekttt et e kbt e e a bt e et e e eabe e be e e nbne e nbeeenanee e 170
ADM _BENEBXLE ...t et e et et e e et a e e e e e e e e a e aeaees 171
F B L S =T To | = (4 (o PP TPRR 172
ADM_BUFUNC.. ...t s 173
ADM_SEESTALUSeveeiiiie ettt e et e e e a et e e e s e e e e e e r et e e e a e s 174
ADM _SEIBESTATUSeieie ettt ettt e e e st e e e s e e e e e e e e e e e a e 175

7.7 ADM LED FUNCLONScciiiieiiiitet ettt e e e e e e e enabeeeaaaeaean 176

ProSoft Technology, Inc. Page 7 of 342

February 20, 2013

Contents MVIADMDZXL' Programmable

Developer's Guide 'C' Programmable Application Development Module
ADM_SEELEM ...ttt 176
7.8 ADM API FIash FUNCHONS........cociiiiiieiiie e 177
ADM _FIEGEESIIING ...vteeeeiitietee ittt ettt ettt e sttt e sk et e e s bb e e e e s anne e e e s anb b e e e s annneee s 177
F D Y T (T o | OO UU SR 178
F YD Y I 11T 1= (O o - R 179
ADM_GEEVAL ...ttt b ettt b et b e ebe e e abbe e e be e e enbeeenees 180
F D 1Y T (04 s -1 PSP PRPU RPN 181
ADM _GEESTT ...ttt n e r e nnres 182
ADM_SKIPTONEXL ... tee ittt sttt ettt e e s sb et e sa e e s r e e snr e e ne e e nnn e e nre e e nnneennnes 183
ADIM_GELC ..ttt ettt ettt n e E e 184
7.9 ADM API Miscellaneous FUNCLONS.ociiiiiiiiiieeriee e 185
YYD Y B CT=1 AV 4=T = To) 1] 1] o SRR 185
PN B Y RS Y= (0] g I=T0] (=T o o (R 186
ADM_SEtCONSOIESPEEMeiiiiiiiiie ettt b e bb et e s bbb e s b e e e e s as 187
7.10 ADM Side-ConNECt FUNCHONSccoiiiiiieiiiiiee ettt 188
ADM_SCOPEN ..ttt et e e e e e 188
ADM _SCCIOSE ...ttt ettt ettt e bttt e b et bbbt e h b et e e ab e e e e s nb e e e e e nnneae s 189
ADM_REAASCHRIIE ...ttt ettt ekt e bb bt e e s nb et e e s nannea s 190
ADM_REAASCCTG ittt ittt ettt b et e e b e e nnae s 191
ADM S CS AN ...ttt ettt e e a 192
7.11 ADM API RAM FUNCHONStiieiiiieiieeriee ettt 193
ADM_EEPROM_ReadConfiguration............ccoeiiiiiiiii e, 193
ADM_RAM_Find_SeCHON ..o 194
ADM_RAM_GEEISHING «..tvteiieeitie ettt ettt e bt s b e st e e sab e e e be e e sbr e e s beeesnreeennes 195
ADM_RAM_GEINT ...ttt ettt b e n e rr e 196
ADM_RAM _GEILONG tttettteeeieiit ettt e st e e e e e s e e e e e s e e e e e e e 197
ADM_RAM_GEIFIOBL.........vvveeeeceeeeieeeeeeeeete e iee s s ses et ee et eses s s e e es s s e aes s s enaneeaeens 198
ADM_RAM_GEIDOUDIE ...ttt ettt ettt e e e 199
ADM_RAM _GEECRATcciitiiti ittt ettt ettt b et e e s 200
8 Backplane API Functions 201
8.1 Backplane API Initialization FUNCLONSccuuiiiiiiiiiiiiiee e 203
Y V1o T o T o PP PPPPPPNt 203
Y V1o o T [1= = PPNt 204
8.2 Backplane API Configuration FUNCHIONSuvvviiiiiiiiiiiieiiiiieieeeeeeeeeeeeseeeeveveeenenes 206
Y AV AT o] o T =1 4 (@ 1o T { o [P PPPPPPINS 206
Y AV AT o] o TS 1= [L@ o] oo [P PPPPPPPNt 208
8.3 Backplane APl Synchronization FUNCLONS.............cuuviveviviiiiiiiieiieeeieeeeeeeeeeesneeenenns 210
MVIDP_WaItFOITNPUESCANceiiiiiiii ettt ettt s e e e e 210
MVIDP_WatFOrOULPULSCAN ...coeiueiiiieiiieit ettt sttt e e 212
8.4 Backplane API DIreCt /O ACCESSccciuuiiiiiiiiiieiiiiee ettt 214
MVIDP_REAAOULPULIMEAGE.eei ettt s e e 214
MVIDP_WHEEINPULIMAGE ...ttt ettt et e et e e e e 215
8.5 Backplane APl Messaging FUNCLONScocuiiiiiiiiiieiiiice e 216
MVIDP_ RECEIVEMESSAUE ..ooeiiiiiiiiiiiiiiiiiiieeiieeeeeeeteeeeeeeeeteeeeeeeeeseseeeeseaesssssssssassssssssssssssssssssssnnnnnnes 216
Y AV AT o] o TS =T a0 1LY LST T ST Vo T PP PPPPPPNt 218
8.6 Backplane API Miscellaneous FUNCLIONS.............uuiiiiiiiiiiiiieeee e 220
MVIDP_GEIVEISIONINTO ... e e e e e e e 220
Y AVA o] B 1T 1\Y [oTo (][] 1 | {o R TP PUPTT PP 221
VAL o] oI = 4] #S] 1] o T TSRS 222
MVIDP_SEEUSEILEDoiiiiiiiiie ittt st e et e s s ab e e e e nba e e e e neeas 223
MVIDP_SEtMOAUIESTALUS.eeiiiiiiiie it st s et e e et e e e e 224
Page 8 of 342 ProSoft Technology, Inc.

February 20, 2013

MVIADMDZXC Programmable Contents

'C' Programmable Application Development Module Developer's Guide
Y/ AVA] o] o I =1 (@0 E=To] (=11 o o = SRR 225
A4 o o I =T 7= (0] 017 o o PRSP 226
MVIDP_GEIPIOCESSOISTAIUSeeeiiiiriieeeiitiiee ettt ettt e sttt e et e e e sbb e e e sbb e e e s sbe e e e e snbneeeesbneeeeane 227
AVl o] oIS (== « PO PP PP PPTPPPPRPTPPPPPPN 228
MVIDP_SEtCONSOIEMOUE ...ttt et e e st e e e sbr e e e e sbreeeeaaes 229

8.7 Platform Specific FUNCHONScooiiiiiiiiiiiie e 230
MVIbp_ReadModUIERIlE (MVIAB)ccoiiiiiiiiiiiie ittt e e 230
MVIbp_ WrIteMOdUIEFIIE (MVIAB)......ccci it e ettt e e e e e st e e e e e s e s antaeee e e e e e s ennnnes 231
MVIbp_SetModulelnterrupt (MVIAB)c.cooiiieiiieeeesee e 232

9 Serial Port Library Functions 233

9.1 Serial Port API Initialization FUNCHONScccoiiiiiiie e 235
Y AV A 1 o @ = o PRSP UUPUPTPPPN 235
AV £ o @ o =T oV 2N | SRR 237
A £ o 4 0T - SRR 239

9.2 Serial Port APl Configuration FUNCLIONS.........ccoiciiiiiiiiiee e 240
AV o o] 1 o [PO PP P PP PP PPPPRPPPPPPN 240
MVISP_SetHANASNAKINGccciiiiiiiiiiiiiie ettt e e sbbeeeeanes 242

9.3 Serial Port APl Status FUNCLIONScoiiiiiiiiiiiiiieece e 243
MVISP _SEERTS ...ttt e e e e e e et e e e s e s e e et e e e e e s sbrn e e e e e e e e nanne 243
MVISP G BERT S ...ttt ettt e e e e e e et e e et e s e e et e e e s e asn e e e e eeeeaaaanen 244
MVISP_SEIDTR ...ttt ettt et b ettt ess e e bt e be e e sabe e e sbne e snb e e s be e e snneeenee s 245
MVISP_GEIDTR. ...ttt ettt et h et e et e e sh e e b et e be e e sabe e e sbneesnb e e s be e e snneeeneeas 246
AV o 1= (O S T O PSP P PR UPRPP 247
MVISP_GEEIDSR ..ttt ettt sk e e bt b et e s b e sRn e e n e b n e nnre e nee s 248
MVISP_GEIDCD ...citiieitiie ittt ettt h ekt e bt sh e et et e b e e e st e e e sb b e e snb e e s b n e e nnre e nee s 249
MVISP _ GeELINESTALUS 250

9.4 Serial Port APl COMMUNICALIONSuuiiiieeeiiiiiiiiiee et ee et e e e e e 251
MVISP_PULCR. ...ttt e et e e e st b e e e e sbb e e e e anbaeeeeanes 251
AV o 1= (o] o EO PO TP PP PPPPPPPPPPPN 252
MV ISP PULS .. s 253
MVISP_PULD@LA ... s 255
Y YA LS o 1= £ PR SUPPPPPN 257
Y AV A LY o 1= 1 B - = N PP PPPPN 259
MVISP_GEECOUNTUNSENTttt e e e e et e e e e e e e e e bab s e e e e e e eesbaaeeeeeeeesenen 261
MVISP_GetCOUNLUNIEAA ... s 262
MVISP_PUIrgeDatalUNSENTcciieiiiiie et e e et e e e e e e e aa b e e e e e e eeaenen 263
MVISP_PurgeDatalUnrEad.........coooeeeieieie e s 264

9.5 Serial Port APl Miscellaneous FUNCLONScooiiiiiiiiiiiee e 265
MVISP_GEEVEISIONINTO.....eeiiiiiiiiiee ittt e e et e e e e s baeeeeanes 265

10 CIP Messaging Library Functions 267

10.1 CIP MesSaging AP FlES........coo it 268

10.2 (O | o I Y od o1 (=T U = 269
10.2.1 Backplane DEVICE DIIVETcoiuiiieiiiiiee ettt 269

10.3 CIP API Initialization FUNCHONSuuuiiiieeeiiiiiiiinec et ee e e et e e e e e s nenneees 270
Y A4 (el o I O o 1= o [T P TP PRUTR 270
Y A4 [T o 1 (o] PP PP PPUTR 271

104 CIP ODbjJeCt REQISIIAtIONeeiiiiiiiiiiiiee ettt e e aee s 272
MVICIP_RegiStEIASSEMDIYOD]eeiiiiiiiiiie et e e e e e e e e e naees 272
MVIcip_UnregisterASSemMbBIYOD]oooiiii e 274

ProSoft Technology, Inc. Page 9 of 342

February 20, 2013

Contents MVIADMDZXL' Programmable

Developer's Guide 'C' Programmable Application Develomdelet M
10.5 CIPCONNECE® DAA TIANSIEN.........veeeeeereeeee e 275
AV Tt o LA €1 (=1 O 0] o 1= Tox £ [SEERP 275
MVICIP_REAACONNECLEAeiiiiiiiiie ittt s e e e e e e e e e 276
10.6 CIP Callback FUNCLIONS ...ttt e e e e e 278
[o70] 0T ST o1 A 0o 278
1] V(o= o] oL o TP PO PP PP OPPPRPPPPPPPN 282
(916 F= 1= N o] (o] o OO P T PPPRP P 284
1= 1= 2= LU 1L (0TSSR 286
11211 10T oo F= L (= o (TSRS 287
(ST U =To (U TSES A o] o Lo TSP 288
10.7 CIP Special Callback RegiStrationueeveeeeiiiiiiiiiieee et e e e e ssinanee e e e 289
MVIcip_RegisterFatalFaultRINooiiiiiiiirce e e 289
MVICIp_RegIStErRESEIREIRIN i e e e s e s e e e e e s e eanrranees 290
MVIcip_RegisterFlashUpPateRINoiiiiiiii e 291
10.8 CIP Miscellaneous FUNCHONSc.cioiiiiiiiiiiieee et 292
MVICIP_GELIAODJECTeeeeiiii e 292
MVICIP_GEVEISIONINTO ..ottt e e 293
MVICIP_SELUSEILED ..ottt ettt et et e bt e e et e e e aneas 294
MVICIP_SEtMOUUIESTALUSeeieiiieiieiieiee ettt eb e e e e e e e nenes 295
Y AV o o =X 0 £ 1 T PP PPPPPPNS 296
Y AV o] o I €T =] 0T o1, oo = PRSPPIt 297
Y AV Lo o I CT= (@ =T 1= 1Y [To [PPPPPPNt 298
Y VA o S [5T=T o JPPPPPPNt 299
11 Side-Connect API Library Functions 301
111 INIEANIZALION ... e e e e e e e e e 302
1111 PLC Data Table ACCESS.......uuiiiiiieiiiiiiiieet ettt e e e e e e anees 302
11.1.2 SYNCAFOMIZALION ..ttt e e e s 302
11.2 PLC Message HandliNgc..eeeiiiiiiiiiiiiie et 303
11.2.1 2] (o Tod S I =T 1S =T R PURRUR 303
11.2.2 PLC Status and CONLIOlueeiiieeieiiiiiiiee e e e e e s e seeeeer e e e e e e nnnnnes 303
11.2.3 MISCEIIANEBOUSeveiiiiee ettt et e e e e e s e st e e e e e e s e s nnteeeeaeeeeeaannes 303
11.3 Side-connect API Initialization FUNCLIONSoooiiiiiiiiiiiiiieee e 304
Y AV A LYo @] o 1] o TP TRPR 304
Y T o 4 (o 1= = PPNt 305
114 Side-connect APl PLC Data Table Access FUNCLIONSc.uveeeieiiiiiiiiiiiieeeeen, 306
Y AV o €= 1 IO 1 1= o) o PP PPPPPPINt 306
Y Y oA 1 (=Y o P PPPPPPRt 308
MVISC_REAAPLC ...ttt ettt sttt e et e e et e e e e bt e e e bt e e e ebbe e e e enbeas 310
MVISC_RMWPLC ...ttt ettt ettt et ettt ettt e ee et e eeeeeeeeeeeeseeeeseeeeennnnnne 312
11.5 Side-connect API Synchronization FUNCHONS.........c..uviiiiiiiiiiieiee e, 314
MVISC_WAIFOIEDS.eeiieiitiet ettt et e bt e e st e e e e bbb e e e e nbae e e e nenas 314
11.6 Side-connect API PLC Message Handling FUNCLIONSc.ccccceeiiiiieiiiiee e, 315
MVISC_PLCMSGREAMceiiiiiiieiiiete ettt sttt ettt e et e e e e bb e e e e abae e e e nnbnas 315
MVISC_ PLCMSGWIILE ...eeeeieieiiiieeieieeeeeeeeeee ettt ettt e e e eeeeeeeeesesaeeaesassasaasessaesssssesssnsnsssssesnsnnnnnnns 316
MVISC_ PLCMSGWAILoeiiiiiiiiiiiiiieiiieieieeeee ettt ettt et et e aeaeeeaaesaaaaesseaesesasesssssssssssnsesnnnnnnns 317
11.7 Side-connect API Block Transfer FUNCLIONSc..uviiiiiiiiiiiiceeiieece e 318
AV E o = IO 2 i I 2 LY Lo S STRST 318
Y E o IO 2 Y41 (SRS 319
11.8 Side-connect API PLC Status and Control FUNCHONScocccceiviiiieeiiieeeee, 320
MVISC_GEIPLCSIALUSeeveiiiiieeiie ittt ettt ettt e e e s e e e e e e s e s r e e e e e e e e s reeees 320
MVISC_GEIPLCCIOCK.eeiiiieiii ettt ettt sttt e e et e e e e et e e e e nbae e e e nneeas 322
Page 10 of 342 ProSoft Technology, Inc.

February 20, 2013

MVIADMDXL' Programmable Contents

'C' Programmable Application Development Module Developer's Guide
Y AV ESY oS} ot = I O [Yo PRSP 323
AV ESY o O 1= = g = T SRR 324
MVISC_SEIPLCMOUE.ciiieiiiiiteeeee ettt e e e e ettt e e e e e s e s s bt et e e e e e e s e asnbaeeeaaeeesaannnes 325
11.9 Side-connect API Miscellaneous FUNCHONSoooiiiiiiiiiieee e 326
MVISC_GEVEISIONINTO ..coiiiiiieee et e et ee e e e e e s e eebaeee e e e e e e e annes 326
IMVISC BT OIS . s 327
MVISC_GEELASTPCCCEITON. .. . s 328
MVISC_BECD2ZBIN ..ttt e e e e e et s e e e et e e e bbb s e e e e e e e enban e e e eeeeenrnes 329
Y AV A L Toa =11 N 124 =10 I PP OUPUPTPPPN 330
12 DOS 6 XL Reference Manual 331
13 Support, Service & Warranty 333
13.1 Contacting Technical SUPPOItuuviiiiee i e e 333
13.2 Warranty INfOrmMation..........cooooioiiiiieee s 334
Glossary of Terms 335
Index 339
ProSoft Technology, Inc. Page 11 of 342

February 20, 2013

Contents MVIADMDZXL' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 12 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Introdation
'C' Programmable Application Development Module Developer's Guide

1 Introduction

In This Chapter

X OPErating SYSIEMuuiiiii e it ee e e e e e e e e e e st e e e e e e e eaarees 13

This document provides information needed for development of application
programs for the MVI ADM Serial Communication Module. The MVI suite of
modules is designed to allow devices with a serial port to be accessed by a PLC.
The modules and their corresponding platforms are as follows:

MVI46: 1746 (SLC)

MVI156: 1756 (ControlLogix)
MV169: 1769 (CompactLogix)
MVI71: 1771 (PLC)

MVI194: 1794 (Flex)

The modules are programmable to accommodate devices with unique serial
protocols.

Included in this document is information about the available software API libraries
and tools, module configuration and programming information, and example code
for both the module and the PLC. This document assumes the reader is familiar
with software development in the 16-bit DOS environment using the 'C'
programming language. This document also assumes that the reader is familiar
with Rockwell Automation programmable controllers and the PLC platform.

T I >

1.1 Operating System

The MVI module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multi-tasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows user applications to be developed using standard DOS
tools, such as Digital Mars C++ and Borland compilers. User programs may be
executed automatically by loading them from either the CONFIG.SYS file or an
AUTOEXEC.BAT file.

Note:DOS programs that try to access the video or keyboard hardware directly will 1ot function
correctly on the Nivddule. Only programs that use the standard DOS and BIOS funt iions to
perform console I/O are compatible.

Refer to the General Software Embedded DOS6-XL Devel operés Gui de
(page 331) on the MVI-ADM CD-ROM for more information.

ProSoft Technology, Inc. Page 13 of 342
February 20, 2013

Introduction MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Apptinddevelopment Module

Page 14 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable
'C' Programmable Application Development Module

Preparing the MAMDM Module
DeveloperGuide

2 Preparing the MVI-ADM Module

In This Chapter

x Package Contents

x Recommended Compact Flash (CF) Cards

x Jumper Locations and Settingsccccceveeeeiiiiiiieneennn.

x Cable Connections

ProSoft Technology, Inc.
February 20, 2013

Page 15 of 342

Preparing the MMM Module MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

2.1 Package Contents

Your MVI-ADM package includes:

A MVI-ADM Module

A ProSoft Technology Solutions CD-ROM (includes all documentation, sample
code, and sample ladder logic).

A Null Modem Cable

A Config/Debug Port to DB-9 adapter

Page 16 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Preparing the MAMDM Module
'C' Programmable Application Development Module Developer's Guide

2.2

Recommended Compact Flash (CF) Cards

What Compact Flash card doesSeforecommend using?

Some ProSoft products contain a "Personality Module", or Compact Flash card.
ProSoft recommends using an industrial grade Compact Flash card for best
performance and durability. The foll owing
modules, and are the only cards recommended for use. These cards can be
ordered through ProSoft, or can be purchased by the customer.

Approved ST-Micro cards:

A 32M = SMCO032AFC6E

A 64M = SMCO64AFF6E

A 128M = SMC128AFF6E

Approved Silicon Systems cards:

256M = SSD-C25MI-3012

512M = SSD-C51MI-3012

2G = SSD-C02GI-3012
4G = SSD-C04Gl-3012

oI > D

ProSoft Technology, Inc. Page 17 of 342
February 20, 2013

a |

Preparing the MMM Module MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

2.3 Jumper Locations and Settings

Each module has three jumpers:

A Setup

A Portl

A Port 2 (Not available on MVI194)

2.3.1 Setup Jumper

The Setup jumper, located at the bottom of the module, should have the two pins
jumpered when programming the module. After programming is complete, the
jumper should be removed.

2.3.2 Port 1 and Port 2 Jumpers

These jumpers, located at the bottom of the module, configure the port settings
to RS-232, RS-422, or RS-485. By default, the jumpers for both ports are set to
RS-232. These jumpers must be set properly before using the module.

Page 18 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Preparing the MAMDM Module
'C' Programmable Application Development Module Developer's Guide

2.4 Cable Connections

The application ports on the MVI-ADM module support RS-232, RS-422, and RS-
485 interfaces. Please inspect the module to ensure that the jumpers are set
correctly to correspond with the type of interface you are using.

Note:When using 32 with rémlmodem applications, some radios or modems requi 2
hardware handshaking (control and monitoring of modem signal lines). Enable this n the
configuration of the module by setting the UseCTS parameter to 1.

2.4.1 RS-232 Configuration/Debug Port

This port is physically an RJ45 connection. An RJ45 to DB-9 adapter cable is
included with the module. This port permits a PC based terminal emulation
program to view configuration and status data in the module and to control the
module. The cable for communications on this port is shown in the following
diagram:

RS-232 Config/Debug Port Cable

DB-9 Male Config/Debug Port
RxD | 2 TxD
T=xD K] RxD
COM| 5 COM

2.4.2 RS-232 Application Port(s)

When the RS-232 interface is selected, the use of hardware handshaking
(control and monitoring of modem signal lines) is user definable. If no hardware
handshaking will be used, here are the cable pinouts to connect to the port.

RS-232 Application Port Cable
(No Handshaking)

DB-9 Male RS-232 Device
RxD | 2 TxD
TxD | 3 RxD
COM| 5 COM
ProSoft Technology, Inc. Page 19 of 342

February 20, 2013

Preparing the MMM Module
Developer's Guide

MVIADMDZX' Programmable
'C' Programmable Application Development Module

RS-232: Modem Connection (Hardware Handshaking Required)

This type of connection is required between the module and a modem or other

communication device.

RS-232 Application Port Cable
{Modem Connection)

DB-9 Male

TxD

RxD

RTS

CTS

Signal
Commaon

DTR

3

RS-232 Device
TxD

RxD

RTS

CTs

Signal

Common

DTR

The "Use CTS Line" parameter for the port configuration should be set to "Y' for

most modem applications.

RS-232: Null Modem Connection (Hardware Handshaking)

This type of connection is used when the device connected to the module
requires hardware handshaking (control and monitoring of modem signal lines).

RS-232 Application Port Cable

DB-9 Male

TxD

RxD

RTS

CTs

Signal
Comman

DTR

3

(Hardware Handshaking)
RS-232 Device

RxD

TxD

CTs

RTS

Signal

Common

DSR

——DCD

Page 20 of 342

ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable

Preparing the MAMDM Module

'C' Programmable Application Development Module Developer's Guide

RS-232: Null Modem Connection (No Hardware Handshaking)

This type of connection can be used to connect the module to a computer or field

device communication port.

RS-232 Application Port Cable

(No Handshaking)

DB-9 Male RS-232 Device
RxD | 2 TxD
™D | 3 RxD
COM| 5 COM

Note:For most null modem connections where hardware handshaking igheitsequire 1,

CTS Linparameter should be s&tand no jumper will be required between Pins 7 (R™ S) and 8
(CTS) on the connedtdhe port is configured witb$keCTS Lirset toY, then a jumper is

required between the RTS and the CTS lines bodhaeation.

RS-232 Application Port Cable

(No Handshaking)

DB-9 Male RS-232 Device
TxD 3 RxD
RxD 2 TxD
RTS 7 RTS-CTS jumper must

be installed if CTS line
cTS 8 monitoring enabled.
Signal 5 Signal
Commen Commeon
DTR 4

ProSoft Technology, Inc.
February 20, 2013

Page 21 of 342

Preparing the MMM Module MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

2.4.3 RS-422

The RS-422 interface requires a single four or five wire cable. The Common
connection is optional, depending on the RS-422 network devices used. The
cable required for this interface is shown below:

RS-422 Application Port Cable

DB-9 Male RS-422 Device
TxD+ 1 RxD+
TxD- 8 RxD-
Signal 5 Signal
Common Common
RxD+ 2 TxD+
RxD- 6 TxD-

2.4.4 RS-485 Application Port(s)

The RS-485 interface requires a single two or three wire cable. The Common
connection is optional, depending on the RS-485 network devices used. The
cable required for this interface is shown below:

RS-485 Application Port Cable

DB-9 Male RS-485 Device
TxD+RxD+ | 1 TxD+/RxD+
TxD-/RxD- | 8 TxD-/RxD-
Signal 5 Signal
Common Common

Note:Termmating resistors are generally not required cA8Ben&8/ork, unless you are
experiencing communication problems that can be attributed to signal echoes or re ections. In
these cases, installing adtf terminating resistor between pins 1 dine Sodule

connector end of the48S line may improve communication quality.

RS-485 and RS-422 Tip

If communication in the RS-422 or RS-485 mode does not work at first, despite
all attempts, try switching termination polarities. Some manufacturers interpret +
and -, or A and B, polarities differently.

Page 22 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable
'C' Programmable Application Development Module

Preparing the MAMDM Module

Developer's Guide

2.4.5 DB9to RJ45 Adaptor (Cable 14)

‘ 180"

Cable Assembly

O eE

J1 N N J2
@ / \‘ DCD TXTXD XD+ @
= RXD RXD+
© 0 e
) GND GND GND =
& DSR RXD- &
; ; RTS
D—— D,
_O@ i _£ CTs TXRXD- TXD- &
@ e W

Wiring Diagram

ProSoft Technology, Inc.
February 20, 2013

Page 23 of 342

Preparing the MMM Module MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

Page 24 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Pogrammable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

3 Understanding the MVI-ADM API

In This Chapter

X AP LIBIAIIES ..ot 26
X Development TOOISciiiciiiciiiiiee e 28
X Theory of OPErationccccvviiieeeiiiiiiiee e eeser e e e 29
X ADM Functional BIOCKScccviiiiiiiiiiieic e 30
X ADM API ArChItECIUIE. ...t 59
X ADM AP FIlES oottt 60
X Backplane APIFIIEScoouviiiiiiie e 64
X Serial AP FIIES ..ot 66
X Side-ConNeCt API FIlESoooiiiiiiiiicec e 67

The MVI ADM API Suite allows software developers to access the PLC

backplane and serial ports without sneeding d
hardware design. The MVI ADM API Suite consists of three distinct components:

the Serial Port API, the MVI Backplane/CIP API and the ADM API.

The MVI Backplane API provides access to the processor

The Serial Port API provides access to the serial ports

The ADM API provides functions designed to ease development.

In addition to the MVI Backplane API, MVI71 also provides the MVI Side-
Connect API as an alternative interface.

Applications for the MVI ADM module may be developed using industry-standard
DOS programming tools and the appropriate APl components.

This section provides general information pertaining to application development
for the MVI ADM module.

> > > >

ProSoft Technology, Inc. Page 25 of 342
February 20, 2013

Understanding the MM R MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

3.1

API Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ or Borland development
tools.

Note:The following compiler versions are intended to be compatible with the MVI m dule API:
A Digital Mars C++ 8.49

A Borland C++ V5.02

More compilers will be added to the listBEithegted for compatibility with them.

3.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

3.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

3.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is provided. The sample application may be
compiled using Digital Mars C++ or Borland C++.

ImportantThe sample code and libraries in th1Y¥S&mples folder are not compatible with,
and are not supported for, the Digital Mars compiler.

Page 26 of 342 ProSoft Technology, Inc.

February 20, 2013

MVIADMDXL' Programmable Understanding tii&/{ADM API
'C' Programmable Application Development Module Developer's Guide

3.1.4 Multi-threading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note:The mukthreading librékgrnel.lim the DOS folder on the distributiBOE®DS
compilespecific to Borland C++ 5.0hdtdempatible with Digital Mars8@e+ ProSoft
Technology, Inc. does not suppotthneaiting with Digital Mars C++ 8.49.

Note:The ADM DOSX. operating system has a system tick of 5 milliseconds. There ore, thread
scheduling and timer servicing occur at 5ms intervals. R&)& & the Devel oper 6s Gui
on the distribution-RDM for more information.

Multi-threading is also supported by the API.

A DOS and cipapi libraries have been tested and are thread-safe for use in
multi-threaded applications.

A MVIbp and MVIsp libraries are safe to use in multi-threaded applications with
the following precautions: If you call the same MVIbp or MVIsp function from
multiple threads, you will need to protect it, to prevent task switches during
the function's execution. The same is true for different MVIbp or MVIsp
functions that share the same resources (for example, two different functions
that access the same read or write buffer).

WARNINGADMandADMNETibraries anmgotthreaesafe. ProSoft Technology, Inc. does ot
support the useAiDMandADMNETibraries in methireaded applications.

ProSoft Technology, Inc. Page 27 of 342
February 20, 2013

MVIADMDZX' Programmable

Understanding the MM API
'C' Programmable Application Development Module

Deeloper's Guide

3.2 Development Tools

An application that is developed for the MVI ADM module must be executed from
the modulebébs Flash ROM disk. Tools are provided
i mage and download it to the modul eds Confi g/ Det

ProSoft Technology, Inc.

Page 28 of 342
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmalpplication Development Module Developer's Guide

3.3 Theory of Operation

3.3.1 ADMAPI

The ADM API is one component of the MVI ADM API Suite. The ADM API
provides a simple module level interface that is portable between members of the
MVI Family. This is useful when developing an application that implements a
serial protocol for a particular device, such as a scale or bar code reader. After
an application has been developed, it can be be used on any of the MVI family
modules.

ProSoft Technology, Inc. Page 29 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' ProgrammabApplication Development Module

3.4 ADM Functional Blocks

3.4.1 Database

The database functions of the ADM API allow the creation of a database in
memory to store data to be accessed via the backplane interface and the
application ports. The database consists of word registers that can be accessed
as bits, bytes, words, longs, floats or doubles. Functions are provided for reading
and writing the data in the various data types. The database serves as a holding
area for exchanging data with the processor on the backplane, and with a foreign
device attached to the application port. Data transferred into the module from the
processor can be requested via the serial port. Conversely, data written into the
module database by the foreign device can be transferred to the processor over
the backplane.

3.4.2 Backplane Communications

MVI146 Backplane Data Transfer

The MVI146-ADM module communicates directly over the backplane. All data for
the module is contained in the module's M1 file. Data is moved between the
module and the SLC processor across the backplane using the module's M-files.
The SLC scan rate and the communication load on the module determine the
update frequency of the M-files. The COP instruction can be used to move data
between user data files and the module's M1 file.

The following illustration shows the data transfer method used to move data
between the SLC processor, the MVI46-ADM module and the foreign network.

SLC Processor MV146-ADM Module

SLC Processor
User Data Files

Shin I-(— Ladder Loglc .
- Trantery dats Module’s
Read [atn 3 Fa—
from moduls’ 1 nterma
M1 Al b dats (o Catita e

!

arsan In the
proce mnor

g /‘
g
" Ladder Logle M1l
ity tata tramwn g
data Tom H
procen tor ma1er c T
dataarean =] Crlvar Orl wri
to M Ale = Logla To hralgn
& Network
spectal Control [—— 3 ggnerioge || b Sla v
Bocki procen sl bn e
1peclal confol Logle
command M
configuration
et
Ladder Loge
Tanimn Mi Als
confguradon (—3= Spacial
fom Progenior Boch
dataarean Handling
to Mo Ale

All data transferred between the module and the processor over the backplane is
through the MO and M1 files. Ladder logic must be written in the SLC processor
to interface the M-file data with data defined in the user-defined data files in the
SLC.

Page 30 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Developméat Modu Developer's Guide

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

Module's Intemal Database Structure

Ueer data area: 5000 . v
registers Fegister
Daa
LLLE]
Configuration and statu= Status | G000
area: 2800 words and
Canfig
Trah
Command coritral omd | TEM
area: 200 words Cantral
P-LE
L]
2000 words of data only I?;'E
awgilableto communication ;'l'reE
ports a
LLLE]

User data contained in this database is continuously read from the M1 file. The
configuration data is only updated in the M1 file after each configuration request
by the module to the SLC. All data in the M1 file is available to devices on the
foreign networks. This permits data to be transferred from these devices to the
SLC using the user data area. Additionally, remote devices can alter the
module's configuration, read the status data and issue control commands. Block
identification codes define specific functions to the module.

The block identification codes used by the module are listed below:

Block Range Descriptions

9000 Configuration request from module
9001 Configuration ready from controller
9997 Write configuration to controller
9998 Warm-boot control block

9999 Cold-boot control block

Each block has a defined structure depending on the data content and the
function of the data transfer as defined in the following topics.

Normal Data Transfer
This version of the module provides for direct access to the data in the module.

Al data related to the module is stored in =
t he modul e, use the COP instruction to copy
user data file. To write data to the module, use the COP instruction to copy data

from a user file to the moduleds M1 file. Re

user data. All other registers are reserved for other module functions.

ProSoft Technology, Inc. Page 31 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Develomdelet M

Configuration Data Transfer Block (9000)

When the module performs a restart operation, it will request configuration
information from the SLC processor. This data is transferred to the module in a
specially formatted write block in the MO file. The module will poll for this
information by placing the value 9000 in word 0 of the MO file. The ladder logic
must construct the requested block in order to configure the module. The format
of the block for configuration is given in the following section.

Module Configuration Data Block (9001)

This block sends configuration information from the processor to the module. The
data is transferred in a block with an identification code of 9001. The structure of
the block is displayed below:

MO Offset Description Length
0 9001 1
1to6 Backplane Set Up 6
7to15 Port 1 Configuration 9
16 to 24 Port 2 Configuration 9

If there are any errors in the configuration, the bit associated with the error will be
set in one of the two configuration error words. The error must be corrected
before the module starts operating.

Special Functionl@&cks

Special Function blocks are special blocks used to control the module or request
special data from the module. The current version of the software supports three
special function blocks: write configuration, warm boot and cold boot.

Write Configuration Block (9997)

This block is sent from the processor, and causes the module to write its current
configuration back to the processor. This functi
configuration has been altered remotely using database write operations. The

write block contains a value of 9997 in the first word. The module will respond

with a block containing the module configuration data. Ladder logic must handle

the receipt of the block. The block transferred from the module is as follows:

MO Offset Description Length
0 9997 1
1to6 Backplane Set Up 6
71015 Port 1 Configuration 9
16 to 24 Port 2 Configuration 9
Page 32 of 342 ProSoft Technology, Inc.

February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

Ladder logic must process this block of information and place the data received
in the correct data files in the . The processor requests this block of information
using the following write block:

M1 Offset Description Length
7800 9997 1

Warm Boot Block (9998)

This block is sent from the SLC processor to the module when the module is
required to perform a warm-boot (software reset) operation. This block is
commonly sent to the module any time configuration data modifications are made
in the configuration data area. This will cause the module to read the new
configuration information and to restart. The following table describes the format
of the control block.

M1 Offset Description Length
7800 9998 1

Cold Boot Block (9999)

This block is sent from the SLC processor to the module when the module is
required to perform the cold boot (hardware reset) operation. This block is sent to
the module when a hardware problem is detected by the ladder logic that
requires a hardware reset. The following table describes the format of the control

block.
M1 Offset Description Length
7800 9999 1

MVI156 Backplane Data Transfer

The MVI56-ADM module communicates directly over the backplane. Data is
paged between the module and the ControlLogix processor across the backplane
using the module's input and output images. The update frequency of the images
is determined by the scheduled scan rate defined by the user for the module, and
by the communication load on the module. Typical updates are in the range of 2
to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 250 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 248 words. This
large data area permits fast throughput of data from the processor to the module.

ProSoft Technology, Inc. Page 33 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

The following illustration shows the data transfer method used to move data
between the ControlLogix processor, the MVI56-ADM module and the foreign

device.
ControlLogix Processor FVI56-ADM Module
Cortrol Logix Processor
Cortrdler Tags Module's
Iritermal
shin |.< — Ladder Databasze
Read Cats fg————— Logic
* Transfers
Catafrom 1
rnodu ez input Input mage /
image to data E
areasinthe =3
processor =
. = Master - - .
“hiite ol t Ladder H Iiréglecr R Fereign T]
F Logic Devi o Foreign
Speclal Control Transfers ; 2vice Metwiork
BocHi > i nwers
Dt fromm Output i rnage
Processor Slave o
data areas ComEmsn{:l ar Driver 3=
to output imags v h
a = confral Logie

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the
ControlLogix processor to interface the input and output image data with data
defined in the Controller Tags.

All data used by the module is stored in its internal database. The following
illustration shows the layout of the database:

Mo d u | termalDatdbase Structure

5000 registers for user data 0

Register Data

4999
2000 words of configuration and 5000
status data
Status and Config
6999

Data contained in this database is paged through the input and output images by
coordination of the ControlLogix ladder logic and the MVI56-ADM module's
program. Up to 248 words of data can be transferred from the module to the
processor at a time. Up to 247 words of data can be transferred from the
processor to the module. Each image has a defined structure depending on the
data content and the function of the data transfer.

Page 34 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

Normal Data Transfer

Nor mal data transfer includes the paging of
internal database in registers 0 to 4999 and the status data. These data are

transferred through read (input image) and write (output image) blocks. The

structure and function of each block is discussed in the following topics.

Block Request frothe Processor to the Module

These blocks of data transfer information from the processor to the module. The
following table describes the structure of the output image.

Offset Description Length
0 Write Block 1D 1

1to 200 Write Data 200
201 to 247 Spare 47

The Write Block ID is an index value used to determine the location in the

modul ebs database where the data will be pla

200 words (block offsets 1 to 200) of data.

Block Response from the Module to the Processor

These blocks of data transfer information from the module to the ControlLogix
processor. The following table describes the structure of the input image.

Offset Description Length

0 Reserved 1

1 Write Block ID 1

2to0 201 Read Data 200

202 Program Scan Counter 1

203 to 204 Product Code 2

205 to 206 Product Version 2

207 to 208 Operating System 2

209 to 210 Run Number 2

211to 212 Not Used 2

213to 219 Port 1 Error Status 7

220 to 226 Port 2 Error Status 7

227 to 232 Data Transfer Status 6

233 Port 1 Current Error/Index 1

234 Port 1 Last Error/Index 1

235 Port 2 Current Error/Index 1

236 Port 2 Last Error/Index 1

237 to 248 Spare 12

249 Read Block ID 1
ProSoft Technology, Inc. Page 35 of 342

February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

The Read Block ID is an index value used to determine the location of where the
data will be placed in the ControlLogix processor controller tag array of module
read data. Each transfer can move up to 200 words (block offsets 2 to 201) of
data. In addition to moving user data, the block also contains status data for the
module. This last set of data is transferred with each new block of data and is
used for high-speed data movement.

The Write Block ID associated with the block requests data from the ControlLogix
processor. Under normal program operation, the module sequentially sends read
blocks and requests write blocks. For example, if the application uses three read

and two write blocks, the sequence will be as follows:

RIW1- R2W2- R3W1- R1W2- R2W1- R3W2- R1W1-

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the modul ebs Configuration/ Debuc

Madule Configuration Data Transfer Block (9000)

When the module performs a restart operation, it will request configuration
information from the ControlLogix processor. This data is transferred to the
module in specially formatted write blocks (output image). The module will poll for
each block by setting the required write block number in a read block (input
image).

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is shown in the following table.

Offset Description Length
0 9000 1
1to6 Backplane Set Up 6

710 15 Port 1 Configuration 9

16 to 24 Port 2 Configuration 9

25 to 247 Spare 223

The read block used to request the configuration has the following structure:

Offset Description Length
0 Reserved 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1

51to 248 Spare 244
249 -2 or-3 1

If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

Page 36 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable
'C' Programmable Application Development Module

Understanding the MM API
Developer's Guide

MV169 Backplane Data Transfer

The MVI169-ADM module communicates directly over the backplane. Data is
paged between the module and the CompactLogix processor across the
backplane using the module's input and output images. The update frequency of
the images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

You can configure the size of the blocks using the Block Transfer Size parameter
in the configuration file. You can configure blocks of 60, 120, or 240 words of
data depending on the number of words allowed for your own application.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module may be set to 62, 122, or 242 words depending on
the block transfer size parameter set in the configuration file.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module may be set to 61, 121, or 241
words depending on the block transfer size parameter set in the configuration
file.

The following illustration shows the data transfer method used to move data
between the CompactLogix processor and the MVI69-ADM module.

Processor MVIE9 Module
Processor
Controller
Tags
Status < Ladder Logic
transfers dat? Module's
from module’s
. . “ Input Image [«— Internal <
input image to Database
data areas in
Read Data the processor
| A
Write Data | *| Ladder logic Master
transfers data Driver e -l
from Logic
—» processor » Output Image — To
Special data areas to Network
Control output image Slave
Blocks - » Driver |4 .-
L - Logic

ProSoft Technology, Inc.
February 20, 2013

Page 37 of 342

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the
CompactLogix processor to interface the input and output image data with data
defined in the Controller Tags. All data used by the module is stored in its internal
database. The following illustration shows the layout of the database:

Modul eds I nternal Dat abase Structure

5000 registers for user data 0

Register Data

4999
3000 words of configuration and 5000
status data
Status and Config
7999

Data contained in this database is paged through the input and output images by
coordination of the CompactLogix ladder logic and the MVI69-ADM module's
program. Up to 242 words of data can be transferred from the module to the
processor at a time. Up to 241 words of data can be transferred from the
processor to the module. The read and write block identification codes in each
data block determine the function to be performed or the content of the data
block. The block identification codes used by the module are listed below:

Block Range Descriptions

-1 Status Block

0 Status Block

1to 999 Read or write data

9998 Warm-boot control block
9999 Cold-boot control block

Each image has a defined structure depending on the data content and the
function of the data transfer.

Normal Data Transfer

Nor mal data transfer includes the paging of t
internal database in registers 0 to 4999 and the status data. These data are

transferred through read (input image) and write (output image) blocks. The

structure and function of each block is discussed in the following topics:

Page 38 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

Block Request from the Processor to the Module

These blocks of data transfer information from the processor to the module. The
structure of the output image used to transfer this data is shown below:

Offset Description Length
0 Write Block ID 1
lton Write Data n

n=60, 120, or 240 depending on the Block Transfer Sizerpéatodtss Configuration file).

The Write Block ID is an index value used to determine the location in the
modul ebs database where the data will be pla

Block Response from the Module to thed2smr

These blocks of data transfer information from the module to the CompactLogix
processor. The structure of the input image used to transfer this data is shown

below:

Offset Description Length
0 Read Block ID 1

1 Write Block ID 1

2 to (n+1) Read Data n

n=60, 120, or 240 depending on the Block Transfer Size parameter (refer to the configuration file).

The Read Block ID is an index value used to determine the location of where the
data will be placed in the CompactLogix processor controller tag array of module
read data. The number of data words per transfer depends on the configured
Block Transfer Size parameter in the configuration file (possible values are 60,
120, or 240).

The Write Block ID associated with the block requests data from the
CompactLogix processor. Under normal program operation, the module
sequentially sends read blocks and requests write blocks. For example, if the
application uses three read and two write blocks, the sequence will be as follows:

RIW1- R2W2- R3W1- R1W2- R2W1- R3W2- R1W1-

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the network or operator
control through the modulebds Configuration/ D

The following example shows a typical backplane communication application.

If the backplane parameters are configured as follows:

Read Register Start: 0
Read Register Count: 480
Write Register Start: 480
Write Register Count: 480

ProSoft Technology, Inc. Page 39 of 342
February 20, 2013

Understanding the MM API
Developer's Guide

MVIADMDZL' Programmable

'C' Programmable Application Development Module

The backplane communication would be configured as follows:

CompactLogix MVI169 Module
0
Read Data
480
Write Data
960

Database address 0 to 479 will be continuously transferred from the module to
the processor. Database address 480 to 959 will continuously be transferred

from the processor to the module.

The Block Transfer Size parameter basically configures how the Read Data and
Write Data areas are broken down into data blocks (60, 120, or 240).

If Block Transfer Size = 60:

CompactLogix

MVI69-Module

Read Block 1
e E——|

Read Block 2

-

Read Block 3

-

Read Block 4

-

Read Block 5

-

Read Block 6

-

Write Block 1

Y

60

120

180

240

300

360

420

480

540

Page 40 of 342

ProSoft Technology, Inc.

February 20, 2013

MVIADMDXL' Programmable
'C' Programmable Application Development Module

Understanding the MM API

Developer's Guide

If Block Transfer Size = 120:

CompactLogix

MVIG9 Module

Read Block 1

-

Read Block 2

e BEE—

Read Block 3

Read Block 4

-l
-

Write Block 1

[
-

Write Block 2

-

120

240

360

480

600

720

ProSoft Technology, Inc.
February 20, 2013

Page 41 of 342

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

If Block Transfer Size = 240:

CompactLogix MVI69 Module

Read Block 1

B

240

o Read Block 2

B

480

Write Block 1

|

720

Write Block 2

960

Warm Boot Block (9998)

This block is sent from the processor to the module (output image) when the
module is required to perform a warm-boot (software reset) operation. The
following table describes the format of the control block.

Offset Description Length
0 9998 1
lton Spare n

n=60, 120, or 2d8pending on the Block Transfer Size parameter (refer to the configuration file).

Page 42 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDZC Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

MVI171 Backplane Data Transfer

The MVI71-ADM module communicates directly over the backplane. Data is
paged between the module and the PLC processor across the backplane using
the module's input and output images or directly to the processor using the side-
connect interface (requires a side-connect adapter). The update frequency of the
images is determined by the scheduled scan rate defined by the user for the
module and the communication load on the module. Typical updates are in the
range of 2 to 10 milliseconds.

This bi-directional transference of data is accomplished by the module filling in
data in the module's input image to send to the processor. Data in the input
image is placed in the Controller Tags in the processor by the ladder logic. The
input image for the module is set to 64 words. This large data area permits fast
throughput of data between the module and the processor.

The processor inserts data to the module's output image to transfer to the
module. The module's program extracts the data and places it in the module's
internal database. The output image for the module is set to 64 words. This large
data area permits fast throughput of data from the processor to the module.

The following illustration shows the data transfer method used to move data
between the PLC processor, the MVI71-ADM module and the foreign device.

Block Transfer

PLCS Processor MVIT1- MCM Module

User Data Flles Madule's
Intermal

T Ooise
I

Water Fareign | € >
Logic :z';: To Fareign
Nertwork

Write Data

Spacial Control |
Blacks

. Slave
Driver >
Logle

The following illustration shows the data transfer operations used when using the
side-connect interface (requires the side-connect adapter):

ProSoft Technology, Inc. Page 43 of 342
February 20, 2013

Understanding the MBM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

SideConnect

PLCS Processor MWIF1- MCHM Module

Uner Dat Fllmn

st
Read [ata \—

1
| — JJ Bt

wirlte Dat |

BsE
3

F
apsolal Confral (T3
Elooke

Briwar [E—
Lugln

When the side connect interface is used, data is transferred directly between the
processor and the module. The module's program interfaces directly to the set of
user data files established in the PLC to pass all data between the two devices.
No ladder logic is required for data transfer, only the establishment of the data
files.

All data transferred between the module and the processor over the backplane is
through the input and output images. Ladder logic must be written in the PLC
processor to interface the input and output image data with data defined in the
Controller Tags. All data used by the module is stored in its internal database.

Modul eds I nternal Dat abase Structure

5000 registers for user data 0

Register Data

4999
3000 words of configuration and 5000
status data
Status and Config
7999

Data contained in this database is paged through the input and output images by
coordination of the PLC ladder logic and the MVI71-ADM module's program. Up
to 60 words of data can be transferred from the module to the processor at a
time. Up to 60 words of data can be transferred from the processor to the
module. Each image has a defined structure depending on the data content and
the function of the data transfer.

Page 44 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understandirige M\VVADM API
'C' Programmable Application Development Module

Normal Data Transfer

Nor mal data transfer includes the paging
internal database in registers 0 to 4999 and the status data. These data are

transferred through read (input image) and write (output image) blocks. The

structure and function of each block is discussed in the following topics.

Block Request frothe Processor to the Module

These blocks of data transfer information from the PLC processor to the module.
The following table describes the structure of the output image.

Offset Description Length
0 Write Block ID 1

1to 60 Write Data 60

61 to 63 Spare 3

The Write Block ID is an index value used to determine the location in the
modul ebs database where the data wil!l be
60 words (block offsets 1 to 60) of data.

Block Response from the Module to the Processor

These blocks of data transfer information from the module to the PLC processor.
The following table describes the structure of the input image.

Offset Description Length
0 Read Block ID 1

1 Write Block ID 1

2to 61 Read Data 60

62 to 63 Spare 2

The Read Block ID is an index value used to determine the location of where the
data will be placed in the PLC processor user data table. Each transfer can move
up to 60 words (block offsets 2 to 61) of data.

The Write Block ID associated with the block requests data from the PLC
processor. Under normal program operation, the module sequentially sends read
blocks and requests write blocks. For example, if the application uses three read
and two write blocks, the sequence will be as follows:

RIW1- R2W2- R3W1- R1W2- R2W1- R3W2- R1W1-

This sequence will continue until interrupted by other write block numbers sent by
the controller or by a command request from a node on the foreign network or
operator control throughthemod ul eés Conf i gurati on/ Debug

If the ladder logic does not send a BTW instruction to the module quickly enough,
it is possible for the MVI71-ADM module to send a hew BTR instruction
requesting the same write block ID.

ProSoft Technology, Inc. Page 45 of 342
February 20, 2013

Developer's Guide

of 1

por

Understanding the MM API MVIADMDXL' Programmabl
Developer's Guide 'C' Programmable Application Development Module

Module Configuration Data Transfer Block (9000)

When the module performs a restart operation, it will request configuration
information from the PLC processor. This data is transferred to the module in
specially formatted write blocks (output image). The module will poll for each
block by setting the required write block number in a read block (input image).
The module will request all command blocks, according to the number of
commands configured by the user for each Master port.

This block sends general configuration information from the processor to the
module. The data is transferred in a block with an identification code of 9000.
The structure of the block is displayed in the following table.

Write Block

Offset Description Length
0 9000 1
1to6 Backplane Setup 6
7to31 Port 1 Configuration 25
32to 56 Port 2 Configuration 25

57 to 63 Spare 7

The read block used to request the configuration has the following structure:

Read Block

Offset Description Length
0 -2 1

1 9000 1

2 Module Configuration Errors 1

3 Port 1 Configuration Errors 1

4 Port 2 Configuration Errors 1

510 63 Spare 59

If there are any errors in the configuration, the bit associated with the error will be
set in one of the three configuration error words. The error must be corrected
before the module starts operating.

Special Function Blocks

Special Function blocks are special blocks used to control the module or request
special data from the module. The current version of the software supports three
special function blocks: write configuration, warm boot and cold boot.

Page 46 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programibl@ Application Development Module Developer's Guide

Write Configuration Ble20Q)

This block is sent from the PLC processor, and causes the module to write its

current configuration back to the processor. This function is used when the

modul eds configuration has been altered remo
operations. The write block contains a value of -9000 in the first word. The

module will respond with blocks containing the module configuration data. Ladder

logic must handle the receipt of these blocks. The blocks transferred from the

module are as follows:

Block-9000, General Configuration Data:

Offset Description Length
0 -9000 1

1 -9000 1
2to7 Backplane Setup 6

8to 32 Port 1 Configuration 25
33to 57 Port 2 Configuration 25

58 to 63 Spare 6

Blocks -6000 to -6003 and -6100 to 6103, Master Command List Data for ports 1
and 2, respectively:

Offset Description Length
0 -6000 to 6016 and -6100 to 6116 1

1 -6000 to 6016 and -6100 to 6116 1

2to 11 Command Definition 10
12to 21 Command Definition 10
22t031 Command Definition 10
32t0 41 Command Definition 10
42to 51 Command Definition 10
52t0 61 Command Definition 10

62 to 63 Spare 2

Each of these blocks must be handled by the ladder logic for proper module

operation. The processor can regquest the mod!
configuration read request block, block code 9997, to the module. The format of

this request block is as follows:

Offset Description Length
0 9997 1
1to 63 Spare 63
ProSoft Technology, Inc. Page 47 of 342

February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programable Application Development Module

When the module receives this command bl ock,
configuration to the processor. If the block transfer interface is used, the blocks

defined in the previous tables (-9000 and -6000 series blocks) will be sent from

the module. If the side-connect interface is used, the user data files will be

updated directly by the module.

Warm Boot Block (9998)

This block is sent from the PLC processor to the module (output image) when the
module is required to perform a warm-boot (software reset) operation. This block
is commonly sent to the module any time configuration data modifications are
made in the controller tags data area. This will cause the module to read the new
configuration information and to restart. The following table describes the format
of the control block.

Offset Description Length
0 9998 1
1to 63 Spare 63

Cold Boot Block (9999)

This block is sent from the PLC processor to the module (output image) when the
module is required to perform the cold boot (hardware reset) operation. This
block is sent to the module when a hardware problem is detected by the ladder
logic that requires a hardware reset. The following table describes the format of
the control block.

Offset Description Length
0 9999 1
1to 63 Spare 63

MV194 Backplane Data Transfer

Central to the functionality of the module is the database. This database is used
as the interface between remote foreign slave devices or foreign master devices
and the Flex 1/0 bus. The size, content and structure of the database are
completely user defined.

Page 48 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable
'C' Programmable Application Develbfodeit

Understanding the MM API
Developer's Guide

The Flex I/O bus reads data from and write data to the database using the
backplane interface. The module interfaces data contained in remote foreign
slave devices to the database when using the MVI94-ADM as a master. User
commands are issued out of the master port from a command list. These
commands gather or control data in the foreign slave devices. When configured
as a slave, control information from the foreign master and data from the
processor are exchanged over the backplane. The following illustration shows

the relationships discussed above:

Foreign 1
Devices ! Poi

| it to hpat

Device

Response| Readtor Read
| Fraction
|t e i Eue:f o
| Read Fanction ' Faction
Respoise !
Mastar (_w_ﬁ?
Driver
Slave
Device

Request

Elex PLC
Processor

Read thm
it In:age

Ladder
Logic

1tk B Ovprtmag:

ProSoft Technology, Inc.
February 20, 2013

Page 49 of 342

Understanding the MM API MVIADMDZX' Programmable

Developer's Guide 'C' Programmable Application Devetddodtle
Data Trasfer
Data is transferred over the backplane using t he

images. The module is configured with an eight-word input image and a seven-
word output image. The module and the Flex processor use these images to
page data and commands. The input image is set (written) by the module and is
read by the Flex processor. The output image is set (written) by the Flex
processor and read by the module. The following illustration shows this

relationship.
DATA TRANSFER OPERATION
FLEX
PROCESSOR MVI94.ADM MODULE
DATA OUTPUT INPUT
TABLE IMAGE IMAGE DATABASE
WWR BLK
RO BLK Wyrite Operation
WWR DATA
Read Operation
RD BLK
RD DATA
Write Operation
Read Operation

The modul ebds pr ogr aningithe blocleideptificatisnicbde e f or s et
used to identify the data block written and the block identification code of the

block it wants to read from the processor. User configuration information

determines the read (Read Start Register) and write (Write Start Register)

locations in the database and the amount of data transferred (Read Register

Count and Write Register Count).

Each read and write operation transfers a six-word data area. The write operation
contains a two-word header that defines the block identification code of the write
data and the block identification code of the read block requested. These
identification codes are in the range of 0 to 666. A value of zero indicates that the
block contains no data and should be ignored. The first valid block identification
code is one and refers to the first block of six words to be read or written.

Page 50 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable
'C' Programmable Application Development Module

Understanding the MM API

Developer's Guide

The module and the processor constantly monitor input and output images. How
does either one know when a new block of data is available? Recognizing a
change in the header information of the image (word 0) solves the problem. For
example, when the module recognizes a different value in the first word of the
output image, new read data is available. When the processor recognizes a new
value in the first word of the input image, new write data is available. This

technique requires the storage of the previously processed data block

identification code. The following illustration shows the normal sequence of
events for data transfer:

FLEX
PROCESSOR

NORMAL DATA TRANSFER OPERATION

MVI94 ADM MODULE

DATA
TABLE

&)

Ladder logic recognizes a new
YWR BIk 1D (1) in Input Image.
It places the data in the image

OuTPUT
IMAGE

in the Data Table.
The ladder logic next writes the read data

reguested to the output image and copies

the RD Blk ID to word O of the
input image.

INPUT
IMAGE

1

1

WWR DATA

1

RD DATA

AN
AN

2

2

WWR DATA

Program initializes the Last RD

block to 0 and the WR Blk and

RD Blk values to 1.

@)

rogram copies data

to input image and

sets header value

©)

DATABASE

- Write Start Register

©

The module's program
recoghizes the value in ward 0

of the output image has changed.
It sets the Last RD =1, places
the data in the DB.

-—— Read Start Register

The module now sets a new value

for the WR Blk parameter and fills

in the data in the input image. It sets
the next RD Blk and the WR Blk values

in the input image. The cycle is now

complete and at step 3.

1 During program initialization, the write and read block identification codes are
set to one. The last block read variable is set to zero.

2 The program copies the first six-word block of the database starting at the
user defined Write Start Register to the input image (words 2 to 7). It then
sets the current read block code in word 1 of the input image. To "trigger" the
write operation, the program places the current write block code into word O
of the input image.

ProSoft Technology, Inc.

February 20, 2013

Page 51 of 342

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

The Flex processor recognizes a new value in word 0 of the input image

(based on the last_write_block_code not equal to write_block_code) in its

ladder logic. The ladder logic computes the offset into the file based on the

following formula:

write_file_offset = (write_block_code - 1) * 6

The new data contained in the input image (words 2 to 7) is copied to the

of fset in the processordéds user data file. The
register in the processor is updated with the new write_block _code.

Note:If the data area transferred from the module exceeds the size offdesingheeuses
processor, logic will be required to handle multiple files.

3 The ladder logic next examines the value of the read_block_code and
computes the offset into the read data file as follows:

read_file_offset = (read_block_code - 1) * 6

Therequired6-wor d, read data is copied to the modul e
(words 1 to 6). To "trigger" the transfer operation, the ladder logic moves the

read_block_code into word 0 of the output image.

4 The modul edbs program recogni zederstthee new read_b
data to the correct offset in the database using the following function:

offset = Read_Start_Register + (read_block_code - 1) * 6
The module sets the last_read_block_code to the value of read_block_code.

5 The module now selects the next read and write blocks. The data for the write
operation is placed in the input image and the read_block code is set. The
module "triggers" the transfer operation by setting the new write_block _code
in word O of the input image. The sequence continues at step 3.

The discussion above is for normal data transfer operation. The following table
lists the block identification codes used by the module.

Block Identification Codes

Type Number Description

R/W 1 to 666 Data blocks used to transfer data from the module to the
backplane and from the backplane to the module. The module's
input/output images are used for the data transfers.

R 9998 Warm boot the module. When the module receives this block, it
will reset all program values using the configuration data.
R 9999 Cold boot the module. When the module receives this block, it

will perform a hardware restart.

Page 52 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

Data is transferred between the processor and the module using the block
identification codes of 1 to 666. The other block codes control the module from
the processors ladder logic. They are implemented when the ladder logic needs
to control the module. In order to use one of the blocks, the ladder logic inserts
the data and code in the output image of the module. The data should be set
before the code is placed in the block. This operation should be performed after
the receipt of a new write block from the module. Each set of codes is described
in the following topics.

Warm Boot Block (9998)

This block does not contain any data. When the processor places a value of
9998 in word 0 of the output image, the module will perform a warm-start. This
involves clearing the configuration and all program status data. Finally, the
program will load in the configuration information from the Flash ROM and begin
running. There is no positive response to this message other than the status data
being set to zero and the block polling starting over.

Cold Boot Block (9999)

This block does not contain any data. When the processor places a value of
9999 in word 0 of the output image, the module will perform a hardware restart.
This will cause the module to reboot and reload the program. There is no positive
response to this message other than the status data being set to zero and the
block polling starting over.

3.4.3 Serial Communications

The developer must provide the serial communication driver code. The serial API
has many useful functions to facilitate writing a driver. A sample communication
driver is included in the example programs.

3.4.4 Main_app.c

The application starts by opening the ADM API, initializing variables, structure
members and pointers to structures. Next, the database is created and initialized
to 0. The backplane driver is then opened and startup() is called. The function
startup(), loads the module configuration, initializes the com. ports and finishes
by showing the application version information. Now the main loop is entered.
The processing that occurs in the loop cycles through the backplane transfer
logic, the com. driver, and the debug menu logic. If the application is quit by the
user, shutdown() is called. The function shutdown() closes the com. ports, closes
the backplane driver, closes the database and closes the ADM API.

ProSoft Technology, Inc. Page 53 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

3.4.5 Debugprt.c

The debug port code shows how a sub-menu can be added to the main menu.
When "X" (Auxiliary menu) is selected, the function pointed to by user_menu_ptr

in the interface structure: that is, interface.user_menu_ptr = DebugMenu ;. The
function name is DebugMenu() but it can be named anything the developer
wishes. Code can be added for additional menu items within DebugMenu() by
adding additional case statements. It is recommended that if long strings must be
sent to the debug port, that the output buffering is used. An example of this is the

"?" case. The string is placed into the buffer (interface_ptr - >puff) using
sprintf . interface_ptr ->buff_ch is the pointer to the first character of the string
and should be set to 0. interface_ptr ->buff len must be set to the number of

characters placed into the buffer. The writing of the characters is handled when
ADM_ProcessDebug() is called.

Example:

sprintf(interface_ptr - >buff,” \ nAUXILLIARY MENU\ n\
?=Display Menu \ n\
1=Selection1 \n\
2=Selection2 \n\
M=Main Menu\ n\ n");

interface_ptr - >buff ch=0;
interface_ptr - >buff_len = strlen(interface_ptr - >buff);
3.4.6 MVicfg.c

The configuration section of the example code is intended to qualify the module
configuration after it is transferred to the module. The logic must be modified to
match any changes to the configuration data structure.

MVI146

For the MV146, the function ProcessCfg() checks the data values transferred
from the configuration file in the SLC processor. If configuration values are added
to the configuration structure in the SLC, then logic to perform boundary checking
on the added data must be added to ProcessCfg()

MVI56

In the case of the MVI56, the function ProcessCfg() checks the data values
transferred from the configuration data tags in the ControlLogix processor. If data
tags are added to the configuration structure in the ControlLogix, then logic to
perform boundary checking on the added data must be added to ProcessCfg()

Page 54 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

MVI69

The MVI69 stores its configuration in EEPROM, downloaded via the debug port.
The EEPROM has 129 KB of configuration space. The function ReadCfg()
parses the file and qualifies the configuration data. The configuration file uses
headings in square brackets to define the sections. Each item is parsed using the
ADM RAM file functions. The file is searched for a configuration item. If a match
is found, the value is saved into a variable. Boundary checking is then performed
on the data. An example of a configuration item search follows:
ptr= ADM_RAM_find_Section (adm_handle, "[Port]");
ports[0].stopbits = ADM_RAM_GetInt(adm_handle, "[Port]");

switch(ports[0].stopbits)

{

case 1:
ports[0O].stopbits = STOPBITS1;

case 2:
ports[0].stopbits = STOPBITS2;
break;

default:
ports[0].CfgErr |= 0x0100;
ports[0].stopbits = STOPBITS1,

}
Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to

the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

MVI71

In the case of the MVI71, the function ProcessCfg() checks the data values
transferred from the configuration file in the PLC processor. If configuration
values are added to the configuration structure in the PLC, then the logic to
perform boundary checking on the added data must be added to ProcessCfg()

ProSoft Technology, Inc. Page 55 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

MV194

The MVI194 stores its configuration in flash memory, downloaded via the debug
port. The function ReadCfg() parses the file and qualifies the configuration data.
The configuration file uses headings in square brackets to define the sections.
Each item is parsed using the ADM flash file functions. The file is searched for a
configuration item. If a match is found, the value is saved into a variable.
Boundary checking is then performed on the data. An example of a configuration
item search follows:
ports[0].stopbits = ADM_FileGetInt("[Port]", "Stop Bits");

switch(ports[0].stopbits)

case 1:
ports[0].stopbits = STOPBITS1;
case 2:
ports[0].stopbits = STOPBITS2;
break;
default:
ports[0].CfgErr |= 0x0100;
ports[0].stopbits = STOPBITS1;
}
Here the file is being parsed for "Stop Bits" under the heading of [Port]. Refer to
the example code for a sample configuration file.

Because a pointer to a function is used by the ADM API to access this function,
the name can be anything the developer wishes. However, the function must
take the same arguments and the same return value.

3.4.7 Commdrv.c

The communication driver demonstrates how a simple driver might be written.
The driver is an ASCII slave that echoes the characters it receives back to the
host. The end of a new string is detected when an LF is received. The
communication driver is called for each application port on the module. The
following illustration shows information on the communication driver state
machine.

The state machine is entered at state -1. It waits there until data is detected in
the receive buffer. When data is present, the state machine advances to state 1.
It will remain in state 1 receiving data from the buffer until a line feed (LF) is
found. At this time the state advances to 2. The string will be saved to the
database and the state changes to 2000.

Page 56 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

State 2000 contains a sub-state machine for handling the sending of the
response. State 2000:2 sets RTS on. The state now changes to 2000:3. The
driver now waits for the RTS timeout period to expire. When it does, it checks for
CTS to be asserted. If CTS detection is disabled or CTS is detected, RTS is set
to off (CTS enabled only) and the state advances to 2000:4. Otherwise it is an
error and RTS is set to off and returns to state -1. The response is now placed in
the transmit buffer. The state is advanced to 2000:5 where it waits for the
response to be sent. If the response times out, RTS is set to off and the state
returns to -1. If the response is sent before timeout, the state changes to 2000:6
where it waits for the RTS timer to expire. When the timer expires, RTS is set to
off and the state returns to -1 where it is ready for the next packet.

RS-485 Programming Note

Hardware

The serial port has two driver chips, one for RS-232 and one for RS-422/485.
The Request To Send (RTS) line is used for hardware handshaking in RS-232
and to control the transmitter in RS-422/485.

In RS-485, only one node can transmit at a time. All nodes should default to
listening (RTS off) unless transmitting. If a node has its RTS line asserted, then
all other communication is blocked. An analogy for this is a 2-way radio system
where only one person can speak at a time. If someone holds the talk button,
then they cannot hear others transmitting.

In order to have orderly communication, a node must make sure no other nodes
are transmitting before beginning a transmission. The node needing to transmit
will assert the RTS line then transmit the message. The RTS line must be de-
asserted as soon as the last character is transmitted. Turning RTS on late or off
early will cause the beginning or end of the message to be clipped resulting in a
communication error. In some applications it may be necessary to delay between
RTS transitions and the message. In this case RTS would be asserted, wait for
delay time, transmit message, wait for delay time, and de-assert RTS.

RS5-485 Transmit! Receive

RTHCA RTH CfF
Urit 4 RTS | |
s Transmit T ST T R]
trit A& D=]

Urit B RTS

Transmit

Unit B D=

Oplanal Cpiionml
iy By
ProSoft Technology, Inc. Page 57 of 342

February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

Software

The following is a code sample designed to illustrate the steps required to
transmit in RS-485. Depending on the application, it may be necessary to handle
other processes during this transmit sequence and to not block. This is simplified
to demonstrate the steps required.

int length = 10; /I send 10 characters

int CharsLeft;

BYTE buffer[10];

/l Set RTS on

MVIsp_SetRTS(COM2, ON);

/I Optional delay here (depends on appl ication)
/I Transmit message

MVIsp_PutData(COM2, buffer, &length, TIMEOUT_ASAP);
/I Check to see that message is done
MVIsp_GetCountUnsent(COM2, &CharsLeft);

/I Keep checking until all characters sent

while(CharsLeft)

{

MVIsp_GetCountUnsent(COM2, &CharsLef t);

}

/I Optional delay here (depends on application)

/I Set RTS off

MVIsp_SetRTS(COM2, OFF);

3.4.8 Using Compact Flash Disks

In order to use Compact Flash disks, you must enable Compact Flash in BIOS
Setup. Once enabled, the Compact Flash Disk should appear as a DOS C: drive.
Use standard 'C' file access functions to read and write to the Compact Flash
disk.

Page 58 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Development Module Developer's Guide

3.5 ADM API Architecture

The ADM API is composed of a statically-linked library (called the ADM library).
Applications using the ADM API must be linked with the ADM library. The ADM
API encapsulates the hardware, making it possible to design MVI applications
that can be run on any of the MVI family of modules.

The following illustration shows the relationship between the API components.

Application
ADM API

SP APl | BP or CIP API

ProSoft Technology, Inc. Page 59 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Application Development Module

3.6 ADM API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

ADM API File Names

File Name Description
admapi.h Include file
admapi.lib Library (16-bit OMF format)

3.6.1 ADM Interface Structure

The ADM interface structure functions as a data exchange between the ADM API
and user developed code. Pointers to structures are used so the APl can access
structures created and named by the developer. This allows the developer
flexibility in function naming. The ADM API requires the interface structure and
the structures referenced by it. The interface structure also contains pointers to
functions. These functions allow the developer to insert code into some of the
ADM functions. The functions are required, but they can be empty. Refer to the
example code section for examples of the functions. It is the developer's
responsibility to declare and initialize these structures.

The interface structure is as follows:
typedef struct

{

ADM_BT_DATA *adm_bt_data_ptr; [* pointer to struct holding
ADM_BT_DATA */

ADM_BLK_ERRORS *adm_bt_err_ptr; [* pointer to struct holding
ADM_BT_DATA */

ADM_PORT *adm_port_ptr[4]; [* pointer to struct holding
ADM_PORT */

ADM_MODULE *adm_module_ptr; /* pointe r to struct holding
ADM_MODULE */

ADM_PORT_ERRORS *adm_port_errors_ptr[4]; /* pointer to struct
holding ADM_PORT_ERRORS */

ADM_PRODUCT *adm_product_ptr; /* pointer to struct holding
ADM_PRODUCT */

int (*startup_ptr)(vo id); /* pointer to function for
startup code */

int (*shutdown_ptr)(void); /* pointer to function for
shutdown code */

int (*user_menu_ptr)(void); /* pointer to function for
additional menu code */

void (*v ersion_ptr)(void); /* pointer to function for
version information */

void (*process_cfg_ptr)(void); /* pointer to function for
checking configuration */

int (*ctrl_data_block_ptr)(unsigned short); /* pointer to

function f or checking configuration */
unsigned short pass_cnt;
short debug_mode;

Page 60 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDZX' Programmable
'C' Programmable Application Development Module

char buff[2000]; /* data area used to hold message
*
int buff_len; /* number of characters to print */
i nt buff_ch; [* index of character to print */
MVIHANDLE handle; /* backplane handle */
HANDLE sc_handle; [* side - connect handle */
int ModCfgErr;
int Appert;
unsigned short cfg_file; [* side - connect usage */

JADM_INTERFACE;
The following structures are referenced by the interface structure:

The structure ADM_PRODUCT contains the product name abbreviation and
version information.

typedef struct
{
char ProdName[5]; [* Product Name */
char Rev[5]; /* Revision */
char Op[5]; [* Month/Year */
char Run[5]; /* Day/Run */

}ADM_PRODUCT;

The structure ADM_BT_DATA contains the backplane transfer configuration
settings and status counters.

typedef struct
{
short rd_start;
short rd_count;
short rd_blk_max;
short wr_start ;
short wr_count;
short wr_blk_max;
WORD bt_fail_cnt; /* number of successive failures before comm
SD */
WORD bt_fail_cntr; /* current number of failures */
WORD bt failed; /* comm SD status */
short rd_blk;
short rd_blk_last;
short wr_blk;
short wr_blk_last;

unsigned short buff[130]; //only require a single buffer because only
lopatatime

WORD wr buff[258];
WORD rdbuff[248];

WORD cbuff[3000];

short bt_size;

JADM_BT_DATA;
The structure ADM_BLK_ERRORS contains the backplane transfer status

counters.
typedef struct
{
WORD rd; /* blo cks read */
WORD Wr; /* blocks written */
WORD parse; /* blocks parsed */
WORD event; /* reserved */

ProSoft Technology, Inc.

February 20, 2013

Understanding the MM API
Developer's Guide

Page 61 of 342

Understanding thg B ADM API MVIADMDZX' Programmable

Developer's Guide

'C' Programmable Application Development Module

WORD cmd;
WORD err;
JADM_BLK_ERRORS;

/* reserved */
/* block transfer errors */

The structure ADM_PORT contains the application port configuration and status

variables.

typedef struct

{

char enabled; /*Y=Yes, N=No */

unsigned short baud,; [* port baud ra te */

short parity; [* port parity */

short databits; /* number of data bits per character */

short stopbits; /* number of stop bits */

unsigned short MinDelay; /* minimum response delay */
unsigned short RTS_On; [* RTS delay before assertion */

unsigned short RTS_Off; /* RTS delay before de - assertion */
char CTS; /* Y=Yes, N=No */

short state; [* state of comm. Message state machine */
int len; /* length of data in buffer */

int expLen; /* expected length of message */

unsigned long timeout; /* timeout for message */

int ComsState; /* State of serial communication */

int RTULen; /* reserved */

unsigned short tm;
unsigned short tmlast;
long tmout;
long tmdiff;

/* timing variable; used for current time */
[* time of previous time check */
/* timeout time variable */

/* holds tm - tmlast ¥/
unsigned short CurErr;
unsigned short LastErr;
unsigned short CfgErr;

[* current comm. error */
/* previous comm. error */
[* por t configuration error */

unsigned short buff_ptr; /* pointer to current location in buff */

char buff[600]; /* buffer for holding comm. packets */
unsigned char SendBuff[1000]; /* reserved */

unsigned char RecBuff| 1000J; /* reserved */
}ADM_PORT;

The structure ADM_MODULE contains the module database configuration
variables.

typedef struct

{

char name[81]; /* module name */

short max_regs; /* number of database registers */
short err_offset; /* address of status table in database */

unsigned short err_freq; /* status table update time in ms */

short rd_start; /* read block start address*/

short rd_count; /* read blo ck register count */
short rd_blk_max; /* maximum number of read blocks */

short wr_start; [* write block starting address */

short wr_count; /* write block register count */

short wr_blk _max; /* maximum number of write blocks */
short bt_fail_cnt; /* number of backplane transfer failures */

}ADM_MODULE;

/* before ending communications (not used)*/

The structure ADM_PORT_ERRORS contains the application port
communication status variables.

Page 62 of 342

ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understaiig the MMADM API

'C' Programmable Application Development Module Developer's Guide
typedef struct
{
WORD CmdList; [* Total number of command list requests */
WORD CmdListResponses; /* Total number of command list responses
*/
WORD Cmd ListErrors; /* Total number of command list errors */
WORD Requests; /* Total number of requests of slave */
WORD Responses; /* Total number of responses */
WORD ErrSent; /* Total number of errors sent */
WORD ErrRec; /* Total number of errors received */

JADM_PORT_ERRORS;
The following are the prototypes for the referenced functions:

extern int (*startup_ptr)(void); /* pointer to function for startup code

*

extern int (*shutdown_ptr)(void); /* pointer to function for shutdown
code */

extern int (*user_menu_ptr)(void); /* pointer to function for additional
menu code */

extern void (*version_ptr)(void); /* pointer to function for version
information */

extern void (*process_cfg_ptr)(void); /* pointer to function for checking
configuration */

extern int (*ctrl_data_block_ptr)(unsigned short); /* pointer to function

for checking configuration */

The following is an example excerpted from the sample code of how the pointers
to functions can be initialized:

interface.startup_ptr = startup;
interface.shutdown_ptr = shutdown;
interface.version_ptr = ShowVersion;
interface.user_menu_ptr = DebugMenu;
interface.process_cfg_ptr = ProcessCfg;
interface.ctrl_ data_block_ptr = CtrIDataBlock;

ProSoft Technology, Inc. Page 63 of 342
February 20, 2013

Understanding the MM API MVIADMDXL' Programable
Developer's Guide 'C' Programmable Application Development Module

3.7 Backplane API Files

The backplane API provides a simple backplane interface that is portable among
members of the MVI family. This is useful when developing an application that
implements a serial protocol for a particular device, such as a scale or barcode
reader. After an application has been developed, it can be used on any of the
MVI family modules.

The following table lists the supplied backplane API file names. These files
should be copied to a convenient directory on the computer on which the
application is being developed. These files need not be present on the module
when executing the application.

File Name Description
MVIbpapi.h Include file
MVIbpapi.lib Library (16-bit OMF formatted)

3.7.1 Backplane API Architecture

The MVI APl is composed of two parts: a memory resident driver (called the MVI
driver) and a statically-linked library (called the MVI library). Applications using
the MVI API must be linked with the MVI library. In addition, the MVI driver must
be loaded before an MVI API application can be executed.

This architecture makes it possible to design MVI applications that can be run on
any of the MVI family of modules without modification or even recompilation.

Data Transfer

The primary purpose of the APl is to allow data to be transferred between the
module and the Controller. The API supports two types of data transfer functions:
Direct I1/0 and Messaging. Each of these methods has advantages and
disadvantages. The appropriate function for use will mainly depend upon the
amount of data to be transferred.

Direct I/0O Access

For small amounts of data (that isnpputdata that wi
or output image), the direct I/O functions provide simple, fast access to the

modul eds input and output images. This is the si
transfer data to and from the control processor, because the control processor

code accessesthemodul ebés |/ O i mage as it would for any c
The disadvantage of this method is that the amount of data that can be
transferred is |imited by the size of the modul e

The direct I/O functions are MVIbp_Writelnputimage (page 215) and
MVIbp_ReadOutputimage (page 214).

It is important to note that if messaging is used, a portion of each 1/0 image must
be reserved for messaging, and therefore will not be available for direct I/O
access. One word of input and one word of output are required for messaging
control for each direction of desired data flow.

Page 64 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Progimmable Application Development Module Developer's Guide

For example, if bi-directional messaging is used, at least two words of output and
two words of input image must be reserved for messaging.

Direct 1/0 access begins at the first word of the input and output images (word 0).
If only one direction of messaging data flow is enabled, that messaging control
word is always the last word of the total image size (refer to the
MVIbp_SetlOConfig (page 208) function). If both directions of messaging data
flow are enabled, the SendMessage (from the MVI to the Controller) control word
is the last word of the total image size, and the ReceiveMessage (from the
Controller to the MVI) control word is the word before the last word of the total
image size.

Messaging

For | arge amounts of data (that is, data tha:
input or output image), the Messaging functions provide a data transfer

mechanism that is very simple for the module application to use. Large amounts

of data may be transferred to and from the control processor with a single

function call, with the transfer protocol handled by the API.

The main disadvantage of this method is that the control processor code is more
complex.

Example ladder logic code is provided to illustrate how the messaging protocol
may be implemented on the control processor.

Note:At this time,assaging is not supported on the MVI169.

Messaqing Protocol

The APl messaging protocol has been designed to be as simple as possible,

while providing the necessary controls for reliable data transfer between the

module and the control processor. The protocol is completely handled by the

API, and is therefore transparent to the module application. However, the

protocol must be i mplemented in the control |
details of the protocol are presented here.

The protocol utilizes two control words for each direction of data flow: the Input
Control Word, which is written by the module and read by the processor, and the
Output Control Word, which is written by the processor and read by the module.
The location of these control words depends upon how the module is configured
by the user. If only one direction of messaging data flow is enabled, that
messaging control word is always the last word of the total image size (refer to
the MVIbp_SetlOConfig (page 208) function).

If both directions of messaging data flow are enabled, the SendMessage (from
the MVI to the Controller) control word is the last word of the total image size and
the ReceiveMessage (from the Controller to the MVI) control word is the word
before the last word of the total image size.

ProSoft Technology, Inc. Page 65 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Pogrammable Application Development Module

3.8 Serial API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the

application.

File Name Description

MVIspapi.h Include file

MVlspapi.lib Library (16-bit OMF format)

3.8.1 Serial API Architecture

The serial APl communicates with foreign serial devices via industry standard
UART hardware.

The API acts as a high level interface that hides the hardware details from the
application programmer. The primary purpose of the API is to allow data to be
transferred between the module and a foreign device. Because each foreign
device is different, the communications protocol used to transfer data must be
device specific. The application must be programmed to implement the specific
protocol of the device, and the data can then be processed by the application
and transferred to the control processor.

Note:Care must be taken if using PRT1 (COM1) when the console is enabled or thc Setup jumper
is installed. If the console is enabled, the serial API wié tmtharade the baud rate on

PRT1. In addition, console functions such as keyboard input may not behave prope ‘ly while the
serial API has control of PRT1. In general, this situation should be avoided by disal ling the console
when using PRT1 with thel #éia

Page 66 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Understanding the MM API
'C' Programmable Application Deeelddiodule Developer's Guide

3.9

Side-Connect API Files

The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.

File Name Description
MVlscapi.h Include file
MVlscapi.lib Library (16-bit OMF format)

3.9.1 Side-Connect API Architecture

The side-connect API is an alternative communication path to the backplane
interface. This architecture is only used in the MVI71 module. Applications using
the MVI API must be linked with the MVI library, and the MVI must be directly
connected to the PLC-5 via the side-connect interface.

3.9.2 Data Transfer

The side-connect interface provides the fastest available communications path to
the PLC-5. With the API, applications may read and write to the PLC-5 data
tables, synchronize with the PLC-5 ladder scan, handle message instructions
from the PLC-5, set the PLC-5 mode, clear faults, perform block transfers
through the PLC-5, and perform other functions.

When the side-connect interface is used, no ladder logic is required for normal
data transfer. The module directly reads and writes information between the
module and the processor using the user data files defined. The SC_DATA.TXT
file contains the file number to be used for the configuration file. This file number
and the module configuration determine the set of user data files required in the
PLC. In order to perform special control of the module (for example, warm-boot
operation), ladder logic is required.

ProSoft Technology, Inc. Page 67 of 342
February 20, 2013

Understanding the MM API MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Applicationdpeveht Module

Page 68 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Setting Up Your Development Environment
'C' Programmable Application Developméat Modu Developer's Guide

4 Setting Up Your Development Environment

In This Chapter

x Setting Up Your COMPIIET.........oovviiiiiiiiieiiee e 70
x Setting Up WINIMAGE ...t 87
x Installing and Configuring the Modulecccciiiiiiiiiiieee e, 88
ProSoft Technology, Inc. Page 69 of 342

February 20, 2013

Setting Up Your Development Environment MVIADMDZX' Programmable
Developer's Guide 'C' Programmable Agapion Development Module

4.1 Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the MVI platform. The following topics
describe the setup procedures for each of the supported compilers.

4.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note:This procedure assumes that you have successfully installed Digital Mars C+- 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_MVI.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_MVNSAMPLES\.

ImportantThe sample code and libraries in th1¥¥S&mples folder are not compatible with,
and are not supported for, the Digital Mars compiler.

Building an Existing Digital Mars C++ 8.49 ADM Project
1 Start Digital Mars C++ 8.49, and then click Project - Open from the Main

Menu.
Open Project ﬂ x|
File name: Folders: oK
Ix pri .. SmviS6-adm-serial-in -

. Cancel
56.admn-si. prj = e\ =] .&I

(= 4DM_TOOL_MVI
= SAMPLES
(= MVI56-Samples

(£ MVI56-4DM
G MVISE-ADM-Seifig

List files of type: Drives:

|Proiect[*.pri} ﬂ Ic LI Network... |

2 From the Folders field, navigate to the folder that contains the project
(C:\\ADM_TOOL_MVINSAMPLES\¢é) .
3 Inthe File Name field, click on the project name (56adm-si.prj).

Page 70 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Setting Up Your Development Environment
'C' Programmable Applicatiordpevent Module Developer's Guide

4 Click OK. The Project window appears:

=| Parze View Trace
By BRadn-si.prg | | Hane | Ext [path

j MYISBADM-Serial .C CanADM_TOOL_ ~ |
S6adm-31. OEF LOEF CivADM_TOOL

adnapi.h L CihADM_TOOL_
cipapi.h Lh CrwaOM_TOOL_
MYISEAOM-Serial H CinADM_TOOL_
mvibpapi.h -h CzADM_TOOL_
myiscapi.h .h CinADM_TOOL_
mvizpapi.h -h CzADM_TOOL_
ADMAPT. LIE .LIE

[E] cipapl.LIB .LIB

j MYIBPAPI.LIE -LIE
MYISCAPL.LIE -LIE
% MYISPAPL.LIE -LIE

]

5 Click Project - Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

=] Edit _ Stopl
setup_module =]

s1.LHK
T MV 156-ADN-SERTAL- 1AMy IBPAPT, LIB(util) (12392576): Previous Definition Different : EDelay x imsSqus
Error: C:\ADM_TOOL_MY INSAHPLES\HY ISE-SARPLES\MY IS6-ADMNRY ISE-ADM-SERTAL~INMY IBPAPT. LIB(util) (1232576): Previous Definition Different : G0elay x_10usg$qul
ren . \$SCUS.EXE SBadm-si.EXE
AF65dN-51.EXE built

Lines Processed: 3069 Errors: 2 MWarnings: O
Build failed

Porting NotesThe Digital Mars compiler classifies duplicate library names as Level . Errors

rather than warnings. These errors will remfsstves as "Previous Definition Differer :

function name”. Level 1 errors afataband the executable will build and run. The arc itecture

of the ADM libraries will cause two or more of these errors to appear when the exe utable is built.
This is @ormal occurrence. If you are building existing code written for a different c« mpiler you
may have to replace calls toménfunctions with the Digital Mars equivalent. Refer to 1e Digital
Mars documentation on thetiRenLibrary for the functivasadle.

ProSoft Technology, Inc. Page 71 of 342

February 20, 2013

Setting Up Your Development Environment MVIADMDZX' Programmable
Developer's Guide 'C' Programable Application Development Module

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be
accessed by clicking Project - Settings from the Main Menu.

Project Settings

Target | EBuild | Option Sets

Include Directories:

Library Directories:

Compiler Dutput Directory:

T arget Output Directory:

Browser Exclude Directones:

Source Search Path:

oK I Caticel |

Creating a New Digital Mars C++ 8.49 ADM Project
1 Start Digital Mars C++ 8.49, and then click Project - New from the Main

Menu.
1. Name '“:'IE'::t Froject M ame: Directories:
2. Set project type - 3 i
2. Add fles to project lSBadm-sdpn oo mviBE-adm-zenial-in
4. Initial settings BB adm-si.prj _ﬂ = ot ;]
[ADM_TOOL_MWI
== SAMPLES
= MWIBE-Samples
(= MYISE-ADM

H = MVISE-ADM-Se = |

List Files of Type: Dirives:
IF‘roiect [*.pril L! | =1 j
ListEiles |
Mew Directony... |
™ Usze &ppEspress to create new application
< Eresious I et > I Finish | Carcel |

|Type a name for your project and either press Mest, or check Use AppExpress and press Finish, |

2 Select the path and type in the Project Name.

Page 72 of 342 ProSoft Technology, Inc.
February 20, 2013

MVIADMDXL' Programmable Setting Up Your Development Environment
'C' Programmable Agapion Development Module Developer's Guide

3 Click Next.

ProjectExpress il x|

1. Mame project

0] TR r~ Project Settings
3. Add files to project " Debug
4. Initial settings (* Release
Flatform Target Type
I Dos j I Executable L!
— Lge: i~ Character Type
= HLE I MFC = Single Byte
= O) MEE[ILE] € hulti Byte
™ ODBC & RGN P U icade
¥ Allow Project to be Built ¥ Automnatically Parse
™ Parse System Files

<F'revi0us| Mext > | Finish | Cancel |

|Ehoose the type of project vou would like to create and press Mest. |

4 |n the Platform field, choose DOS.
5 In the Project Settings choose Release if you do not want debug information
included in your build.

6 Click Next.

7 Select the first source file necessary for the project.

8 Click Add.

9 Repeat this step for all source files needed for the project.

10 Repeat the same procedure for all library files (.lib) needed for the project.

ProSoft Technology, Inc. Page 73 of 342
February 20, 2013

