ProSoft’

TECHNOLOGY

Where Automation Connects.

Co D
ProLinx
PLX-ADMNET

'C' Programmable
Ethernet Module

R e Y - -
N f
AN

811100 PROGRAMMABLE
%59 MODULES

February 20, 2013

DEVELOPER GUIDE

Important Installation Instructions

Power, Input and Output (I/O) wiring must be in accordance with Class I, Division 2 wiring methods, Article 501-4 (b)
of the National Electrical Code, NFPA 70 for installation in the U.S., or as specified in Section 18-1J2 of the Canadian
Electrical Code for installations in Canada, and in accordance with the authority having jurisdiction. The following
warnings must be heeded:

A WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS MAY IMPAIR SUITABILITY FOR
CLASS I, DIV. 2;

B WARNING - EXPLOSION HAZARD - WHEN IN HAZARDOUS LOCATIONS, TURN OFF POWER BEFORE
REPLACING OR WIRING MODULES

C WARNING - EXPLOSION HAZARD - DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NONHAZARDOUS.

D THIS DEVICE SHALL BE POWERED BY CLASS 2 OUTPUTS ONLY.

All ProLinx® Products

WARNING — EXPLOSION HAZARD — DO NOT DISCONNECT EQUIPMENT UNLESS POWER HAS BEEN
SWITCHED OFF OR THE AREA IS KNOWN TO BE NON-HAZARDOUS.

AVERTISSEMENT — RISQUE D'EXPLOSION — AVANT DE DECONNECTER L'EQUIPMENT, COUPER LE
COURANT OU S'ASSURER QUE L'EMPLACEMENT EST DESIGNE NON DANGEREUX.

Markings

UL/cUL ISA 12.12.01 Class I, Div 2 Groups A, B, C, D

C22.2 No. 213-M1987

&e (€M

243333 183151
CLIDiv2GPsA,B,C,D
Temp Code T5
N3G
ExnAnLIICT5 X
0°C<=Ta<=60°C
Il — Equipment intended for above ground use (not for use in mines).
3 — Category 3 equipment, investigated for normal operation only.

G — Equipment protected against explosive gasses.

ProLinx Gateways with Ethernet Ports

Series C ProLinx™ Gateways with Ethernet ports do NOT include the HTML Web Server. The HTML Web Server
must be ordered as an option. This option requires a factory-installed hardware addition. The HTML Web Server now
supports:

= 8 MB file storage for HTML files and associated graphics files (previously limited to 384K)
= 32K maximum HTML page size (previously limited to 16K)

To upgrade a previously purchased Series C model:

Contact your ProSoft Technology distributor to order the upgrade and obtain a Returned Merchandise Authorization
(RMA) to return the unit to ProSoft Technology.

Your Feedback Please

We always want you to feel that you made the right decision to use our products. If you have suggestions, comments,
compliments or complaints about the product, documentation, or support, please write or call us.

ProSoft Technology

5201 Truxtun Ave., 3rd Floor
Bakersfield, CA 93309

+1 (661) 716-5100

+1 (661) 716-5101 (Fax)
www.prosoft-technology.com
support@prosoft-technology.com

Copyright © 2013 ProSoft Technology, Inc., all rights reserved.

PLX-ADMNET Developer Guide

February 20, 2013

ProSoft Technology ®, ProLinx ®, inRAx ®, ProTalk ®, and RadioLinx ® are Registered Trademarks of ProSoft
Technology, Inc. All other brand or product names are or may be trademarks of, and are used to identify products
and services of, their respective owners.

In an effort to conserve paper, ProSoft Technology no longer includes printed manuals with our product shipments.
User Manuals, Datasheets, Sample Ladder Files, and Configuration Files are provided on the enclosed CD-ROM,
and are available at no charge from our web site: www.prosoft-technology.com.

Content Disclaimer

This documentation is not intended as a substitute for and is not to be used for determining suitability or reliability of
these products for specific user applications. It is the duty of any such user or integrator to perform the appropriate
and complete risk analysis, evaluation and testing of the products with respect to the relevant specific application or
use thereof. Neither ProSoft Technology nor any of its affiliates or subsidiaries shall be responsible or liable for
misuse of the information contained herein. Information in this document including illustrations, specifications and
dimensions may contain technical inaccuracies or typographical errors. ProSoft Technology makes no warranty or
representation as to its accuracy and assumes no liability for and reserves the right to correct such inaccuracies or
errors at any time without notice. If you have any suggestions for improvements or amendments or have found errors
in this publication, please notify us.

No part of this document may be reproduced in any form or by any means, electronic or mechanical, including
photocopying, without express written permission of ProSoft Technology. All pertinent state, regional, and local safety
regulations must be observed when installing and using this product. For reasons of safety and to help ensure
compliance with documented system data, only the manufacturer should perform repairs to components. When
devices are used for applications with technical safety requirements, the relevant instructions must be followed.
Failure to use ProSoft Technology software or approved software with our hardware products may result in injury,
harm, or improper operating results. Failure to observe this information can result in injury or equipment damage.

© 2013 ProSoft Technology. All rights reserved.

Printed documentation is available for purchase. Contact ProSoft Technology for pricing and availability.
North America: +1.661.716.5100

Asia Pacific: +603.7724.2080

Europe, Middle East, Africa: +33 (0) 5.3436.87.20

http://www.prosoft-technology.com/

Contents PLX-ADMNET ¢ 'C' Programmable

Developer Guide Ethernet Module
Contents
Important Installation INSTIUCLIONScooiiiiiiiie e e e s s r e e e e e s e s nnrrnaees 2
N oIV SIoTeTo | o F= Uod [o ST T < 3
(Of0] 01 (=T a1 A B I1=Yod F=1 [= T 3
1 Introduction 7
1.1 (@0 =T= 1] aTo IS} V) (=1 1 SRS 7
2 Preparing the PLX-ADMNET Module 9
21 PaCKage CONENESeiiiiiiiie ittt e e b e e nnneee s 9
2.2 Jumper Locations and SEettiNgSueeeiiiiiiiiiiiiee et 9
2.3 (OF0] a1 aT=T o110 [T 9
3 Setting Up Your Development Environment 11
3.1 Setting Up YOUr COMPIIET......ooiiiiiiieiiie et 11
3.2 Downloading Files to the MOdUIeccueiiiiiiiii e 28
4 Understanding the PLX-ADMNET API 33
41 Y ad I I | o = [T 33
4.2 Development TOOIS ... 34
4.3 B =020 1 I o= = U1 o] o 35
4.4 F N Y o 1 =Y 35
5 Application Development Function Library - ADMNET API 39
5.1 ADMNET AP FUNCHONSueiiieciieete ettt e e s e ettt s e e e s e s ee e bt s e eeaees 39
5.2 ADMNET API INitialiZ€ FUNCHONS.......iiiiee et eeaa e 41
5.3 ADMNET API Release SOCKEt FUNCLIONSocoovuuiiiiieeeeiee et 43
5.4 ADMNET API Send SoCKet FUNCLIONScoevveieiieeee e e 45
55 ADMNET API Receive SOCKEet FUNCHIONS........oovieieieiieee et e e 47
5.6 ADMNET API Miscellaneous FUNCHIONSivieeeieiieeeee ettt e e e e eeaiaes 49
6 WATTCP API Functions 51
6.1 WATTCP APL FUNCHONS ...ttt et e e et e e e e e e e s et e e e e et e e e eeanaees 51
6.2 ADMNET API INitialiZ€ FUNCHONSiiieee ettt e e e e eeeea s 53
6.3 ADMNET API System FUNCONAILYccoooiiiiicieeececcecceee s 54
6.4 ADMNET API Release SOCKEt FUNCLIONSocoovuuiiiiieeeeiee et 69
6.5 ADMNET API Send SocKet FUNCLIONScoivviiiiie it 72
6.6 ADMNET API Receive SOCKet FUNCLIONS........oooivueiiiiiiee et eea s 78
ProSoft Technology, Inc. Page 5 of 94

February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Contents

Ethernet Module Developer Guide
7 DOS 6 XL Reference Manual 87
8 Glossary of Terms 89
9 Support, Service & Warranty 91
9.1 Contacting TechniCal SUPPOI........ccoiiiiiiiiiree e e e s e e e e e eennes 91
9.2 Warranty INfOrmMationceeeeiiiiiiiiiiice e e e s 92
Index 93
Page 6 of 94 ProSoft Technology, Inc.

February 20, 2013

Introduction PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

1 Introduction

In This Chapter

% OPErating SYSIEM . ..iiii i 7

This document provides information needed to develop application programs for
the PLX ADMNET 'C' Programmable Module with Ethernet. The modules are
programmable to accommodate devices with unique Ethernet protocols.

This document includes information about the available Ethernet communication
software API libraries, programming information, and example code.

This document assumes the reader is familiar with software development in the
16-bit DOS environment using the 'C' programming language.

1.1 Operating System

The PLX module includes General Software Embedded DOS 6-XL. This
operating system provides DOS compatibility along with real-time multitasking
functionality. The operating system is stored in Flash ROM and is loaded by the
BIOS when the module boots.

DOS compatibility allows you to develop applications using standard DOS toaols,
such as Borland compilers. In addition to PLX-ADMNET, WATTCP.CFG is
required to assign an IP address to the module.

The format of the WATTCP.CFG is as follows:

ProSoft Technology

Default private class 3 address

my ip=192.168.0.148

Default class 3 network mask
netmask=255.255.255.0

name server 1 up to 9 may be included
Nnameserver=xxx.xXXX.XXX.XXX

name server 2

Nnameserver=xXXx.XXX.XXX.XXX

The gateway I wish to use

ateway=192.168.0.1

some networks (class 2) require all three parameters
gateway,network, subnetmask

gateway 192.168.0.1,192.168.0.0,255.255.255.0
The name of my network

H oH Qe S

domainslist="mynetwork.name"

Note: DOS programs that try to access the video or keyboard hardware directly will not function
correctly on the PLX module. Only programs that use the standard DOS and BIOS functions to
perform console I/O are compatible.

ProSoft Technology, Inc. Page 7 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Introduction
Ethernet Module Developer Guide

Page 8 of 94 ProSoft Technology, Inc.
February 20, 2013

Preparing the PLX-ADMNET Module PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

2

2.1

2.2

2.3

Preparing the PLX-ADMNET Module

In This Chapter

% Package CONENEScoeeiiiiiiieiiee et e e e e r e e 9
< Jumper Locations and SettingSccvvveeeeeiiiiiiiiie e 9
L @70 41 o T=Tod o] PRSP PP 9

Package Contents

Your PLX-ADMNET package includes:

= PLX-ADMNET Module

= ProSoft Technology Solutions CD-ROM (includes all documentation, sample
code, and sample ladder logic).

= Null Modem Cable

= Mini-DIN to DB-9 Cable

Jumper Locations and Settings

Each module has the following jumpers:

= Debug
= Port0

2.2.1 Debug and Port 0 Jumpers

These jumpers, located at the bottom of the module, configure the port settings
to RS-232, RS-422, or RS-485. By default, the jumpers for both ports are set to
RS-232. These jumpers must be set properly before using the module.

Connections

2.3.1 PLX-ADMNET Communication Ports

Depending on the specific hardware and protocol configuration of the gateway,
the PLX-ADMNET module has the following physical connectors:

= Ethernet RJ45 application port

= For gateways implementing a serial protocol only, up to four Mini-DIN serial
application ports

= One Mini-DIN serial debugging port.

ProSoft Technology, Inc. Page 9 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Preparing the PLX-ADMNET Module
Ethernet Module Developer Guide

RS-232 Configuration/Debug Port

This port is physically a Mini-DIN connection. A Mini-DIN to DB-9 adapter cable
is included with the module. This port permits a PC based terminal emulation
program to view configuration and status data in the module and to control the
module. The cable for communications on this port is shown in the following

diagram:
RS-232 Config/Debug Port Cable
DB-9 Male Config/Debug Port
RxD | 2 TxD
™D | 3 RxD
COM| 5 COM

Ethernet Connection

The PLX-ADMNET module has an RJ45 port located on the front of the module
labeled "Ethernet”, for use with the TCP/IP network. The module is connected to
the Ethernet network using an Ethernet cable between the module’s Ethernet
port and an Ethernet switch or hub.

Note: Depending on hardware configuration, you may see more than one RJ45 port on the
module. The Ethernet port is labeled "Ethernet".

Warning: The PLX-ADMNET module is NOT compatible with Power Over Ethernet (IEEE802.3af /
|IEEE802.3at) networks. Do NOT connect the module to Ethernet devices, hubs, switches or
networks that supply AC or DC power over the Ethernet cable. Failure to observe this precaution
may result in damage to hardware, or injury to personnel.

Important: The module requires a static (fixed) IP address that is not shared with any other device
on the Ethernet network. Obtain a list of suitable IP addresses from your network administrator
BEFORE configuring the Ethernet port on this module.

DB9 to Mini-DIN Adaptor (Cable 09)

Cable Assembly

=
|

RS 232 RS 485 RS 422
J1 N N N
= DSR RXD- i
% OTR i
& | | RTS r,l
Gl 1 mo RO ||
& DCD TXRXD+ XD+ : [
' cTS TXRXD- THD- : :
o TXD
& '=\ Jrg' GND GND GND
(B|nc I

Wiring Diagram

Page 10 of 94 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

3 Setting Up Your Development Environment

In This Chapter

0,

s Setting Up YOUr COMPIIET......cviiiiiiiieic e 11

0,

< Downloading Files to the Modulecccoeiiiiiiiiiiiiie e, 28

3.1 Setting Up Your Compiler

There are some important compiler settings that must be set in order to
successfully compile an application for the PLX platform. The following topics
describe the setup procedures for each of the supported compilers.

3.1.1 Configuring Digital Mars C++ 8.49

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology using Digital Mars C++ 8.49. After verifying that
the sample code can be successfully compiled and built, you can modify the
sample code to work with your application.

Note: This procedure assumes that you have successfully installed Digital Mars C++ 8.49 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PLX.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PLX\SAMPLES\.

ProSoft Technology, Inc. Page 11 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Setting Up Your Development Environment
Ethernet Module Developer Guide

Building an Existing Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project — Open from the Main
Menu.

Open Project X

File name: Folders

[x i i\ SmviS6-adm-serial-in

: C |
SEadm-si.prj ;I = et :I &'

(= 4DM_TOOL_MVI
(= SAMPLES
(= MVISE-Samples
(== MVISE-ADM

;] faw MVISE-ADM-Sernilig

List files of type: Drives:

[Proiect [*pri) _'_l I c :I Network... |

2 From the Folders field, navigate to the folder that contains the project
(C\ADM_TOOL_PLX\SAMPLES\...).

3 Inthe File Name field, click on the project name (56adm-si.prj).

4 Click OK. The Project window appears:

| =| Paze View Trace
B} Sbadn~s1.prii

| Hame | Ext | path
WVISGADM-Serial .0 CiADM_TOOL_ -
SBadn-si.0EF .DEF C:%ADM_TOOL

admnapi. h Lo CiwADM_TOOL_
cipapi.h Jh CrwaDM_TOOL_
MYISGADM-Serial WH C:%ADMW_TOOL_
myibpapi.h Wb CinaDM_TOOL_

mviscapi.h .h Ci%ADM TOOL_

=
=z
B
Ui

o
&

k=]
=
=
o

C:%ADH_TOOL_

| CIPAPL.LIE -LIE
| MVIBPAPT.LIE -LIE
| MVISCAPI.LIB -LIE
| MVISPAPI.LIE -LIE

(5] ADHaP1.LIE .LIB
=l
=
=
=

5 Click Project — Rebuild All from the Main Menu to create the .exe file. The
status of the build will appear in the Output window:

Output L
=| Edit_ Stopl
setup_module :J

shut down_nodule
link /M /PACKD:B192 92 /00 /OET /PACKF AH [-

Error: C:AADM_TOOL_MYIMSAMPLES WMV ISE-SARPLES \MYISE-ADM\HY ISE-ADM-SERTAL-INNMWIBPAPT. LIB(util) (1232576): Prewious Definition Different : BEDelay x_lmsSqus

Error: C:\ADM_TOOL_MY INSAHPLES\HY ISE-SARPLES\MY IS6-ADMNRY ISE-ADM-SERTAL~IN MY IBPAPT. LIB(util) (1232576): Previous Definition Different : G0elay x_10usg$qul

ren NGSCNG.EXE S6adn-=1.EXE

2 \5hadn—-s1.EXE built

Lines Processed: 3069 Errors: 2 MWarnings: O

Build failed j

Page 12 of 94 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

6 The executable file will be located in the directory listed in the Compiler
Output Directory field. If it is blank then the executable file will be located in
the same folder as the project file. The Project Settings window can be
accessed by clicking Project — Settings from the Main Menu.

Project Settings

Include Directories:

Library Directories:

Compiler Dutput Directory:
T arget Output Directory:

Browser Exclude Directonies:

Source Search Path:

oK I Cancel

ProSoft Technology, Inc. Page 13 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable

Setting Up Your Development Environment
Ethernet Module

Developer Guide

Creating a New Digital Mars C++ 8.49 ADM Project

1 Start Digital Mars C++ 8.49, and then click Project — New from the Main
Menu.

ProjectExpress

RE m:||eu::t o N
2. Set project type

3. Add files to project l5Badm-sd P

4. Initial zettings

Directories:

oo mviBE-adm-serialin

BBadm-zi.prj _nJ = ot ;]
[£= ADM_TOOL_MVI
(= SAMPLES
(= MWIBE-S amples
(= MVIEE-ADM
C £ MVISE-ADM-Se - |

Ligt Files of Type: Dirives:

I Project [*.pr] L! | = j

ListEiles |
Mew Directary.... |

™ Uze AppE spress to create new application

4 Previousl ext > I Finish |

|T_l,lpe a name for your project and either press Nest, or check Use AppExpress and press Finish.

Cancel |

2 Select the path and type in the Project Name.
3 Click Next.

ProjectExpress x|
1. Mame project % >
pioiect tppe i Project Settings
3. &dd files to project " Debug
4. Initial settings (= Release
Platfarm Target Type
| Dos LI I Executable ;!
0 —Lse: i~ Character Type
i [T OLE ™ MFC ¥ Single Biyte
fad
il IS s € MRELIET | |) MultiBpte
AR
F‘IN ™ oDBC €0 WEE B) Uhicode
b
[T |
¥ &llow Project to be Bl W Automatically Parse
[T Parze System Files
< Previous | Mext » | Finizh | Cancel |
|Ehoose the type of project you would like to create and press Mext. |
4 In the Platform field, choose DOS.

In the Project Settings choose Release if you do not want debug information
included in your build.

Page 14 of 94

ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide

Ethernet Module

6 Click Next.

ProjectE xpress
1. Name projsct Directaries:
2. Set project type .
b AmviBB-adm-senial-in
= et -
[=r ADM_TOOL_MWI
(== SAMPLES
= MVISE-SAMPLES
(= MYISE-ADM
£ MyISE-ADM-SERL x|
Ligt Files of Tupe: Drives:
|Default fileg [".cpp;".cxk;".c.j I Hc j
Froject Files:
Add Hemowe Select Al Unzelect Al I
£ Previous I Mext > I Finizh | Cancel |
|If_l,l0u would like to add existing files ta the project, add them here. “When done, press Nest. |

7 Select the first source file necessary for the project.
8 Click Add.

9 Repeat this step for all source files needed for the project.

10 Repeat the same procedure for all library files (.lib) needed for the project.
11 Choose Libraries (*.lib) from the List Files of Type field to view all library files:

ProjectExpress [x|
1. Name project File Hame: Directaries:
2. Set project type —
3. Add fles to project i e:h. ArviSE-ad-serialin
4. Initial zettings ADMAF LB ;I B o ;I
CIFAFILIB [E= ADM_TOOL_MwI
MyIBPAP.LIB = SAMPLES
MyISCAPLLIB
MYISPAPILIB (= MVISE-SAMPLES
[MYISE-ADM
= = MvISE-A0M-SERK |
List Files of Type: Drives:
|Library (i) zl (= =l
Project Files:
=
Add Hemaye Select All rselectl |
< Previous | MHext > | Finizh | Cancel |
|If you would like to add existing files ta the project, add them here. When done, press Mext. |

ProSoft Technology, Inc.

Page 15 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Setting Up Your Development Environment
Ethernet Module Developer Guide

12 Click Next.

1. Mame project
2. Set project type
3. Add files to project

4. Initia

13 Add any defines or include directories desired.

14 Click Finish.

15 The Project window should now contain all the necessary source and library
files as shown in the following window:

Project

Page 16 of 94 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

16 Click Project — Settings from the Main Menu.

Project Settings

17 These settings were set when the project was created. No changes are
required. The executable must be built as a DOS executable in order to run
on the PLX platform.

18 Click the Directories tab and fill in directory information as required by your
project’s directory structure.

19 If the fields are left blank then it is assumed that all of the files are in the
same directory as the project file. The output files will be placed in this
directory as well.

ProSoft Technology, Inc. Page 17 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable
Ethernet Module

Setting Up Your Development Environment

Developer Guide

20 Click on the Build tab, and choose the Compiler selection. Confirm that the
settings match those shown in the following screen:

Project Settings

T arget Bl-lildl Option Sets | Diirectories |

Caode Generation
Header Files
Memary Madel:
Code Optimizations
‘windows Prolog/Epilog
Output
“Warnings
Debug Information
Linker
Packing & Map File
Definitionz:
Segments
Imports/Exporks
Resource Compiler
Make
External Make
Librarian

Current Option Set:
’Eadm-so.DPN

|Atent e Enaect |

— char Behaviar

™ Enforee AMSI Compatibility

™ Treat Source as Ca+

I™ Relax Type Checking

% signed
" unsigned

" char==unsigned char

™ Suppress Predsfined Macros ~ Pratatyping
™ Exception handing % Standard
™ Rur time type infarmation " Autoprototype
" Shict
I™ Enable new(]. delete]] overlnading
International Characters
& Mone " Taiwanese/Chinese
" Japanese i Korean
Defines I

Include Filename I

Instantiate T emplate l

Ok I Cancel

21 Click Code Generation from the Topics field and ensure that the options

match those shown in the following screen:

i
Header Files
Mermaomn Madelz
Code Optimizations
‘windows Prolog/E pilog
Output
‘W arnings
Debug Information
Linker
Packing & Map Filz
Definitions
Segments
Imports/E xports
Fezource Compiler
Make
External Make
Librarian

Current Option Set:

" Pointer Validatior
[T Gererate Stack Frame
™ Check Stack Overflow

¥ Enable Function-Level Link

™ Mo Defaul Library
™ Use DLL run time library
™ Embed Library Mamed:

™ Use Pascal Calling Convention
™ Use Stdzall Calling Coreention
I” Gen IrLine B0ST Code

™ Fast Flnating Paint

™ Witk Func. Tables in Far Data
[T Set Data Threshold:

Target CPL - Code Segment
386 - [T Generate Mew Segmet for Each Function

[~ Owverride Default Name |_TE><'[

™ PutSwitch Tables in Code 5 egment

Struct Alignment

| ket fronm Fraect |

|65535

I Byte LI ™ Put Expression Stings in Code Segment |

(]9 | Cancel |

Page 18 of 94

ProSoft Technology, Inc.

February 20, 2013

Setting Up Your Development Environment
Developer Guide

PLX-ADMNET ¢ 'C' Programmable

Ethernet Module

22 Click Memory Models from the Topics field and ensure that the options

match those shown in the following screen:

Project Settings

Target Bl-lildl Option Sets I Directories |

Current Option Set;

[SBadmrsi.0PN
|rtrerit o Froject |
ok I Cancel |

Cormpiler
Code Generation — Memory Model
:-. Tiny " Compact
Code 0 ptimizations £~ Small % Large
‘windows Prolag/E pilag
Qutput = Medium () Flat
Warings
Drebug Infarmation
Linker —[Data Segment -
Packing & Map File
Drefinitions ¥ fssume 55 ==D5
Segments
Imports/E sports ™ Ahways Reload DS
Resource Compiler
Make
External Make
Librarian

23 Click Linker from the Topics field and ensure that the options match those

shown in the following screen:

Project Settings

Target BU“dl Option Sets | Directaries |

CDEmElilerG i " Debug Information
ode Generation -
Header Files ™ No Default Library

Memaory Modelz " Case Sensitive
Code Optimizations

\windows Prolog/E pilag ™ Far Call Translation
Output ™ Reorder Seqments
Wiarmings B
[ebug Information ™ Export By Drcinal
[~ Don't Export Mames
Packing & Map File
Definitions
Segments
Imports/E wports
Rezource Compiler

—Exports

£ Erport, Base Sensitie

) Evport, [ppercase

¥ DOSSEG Orderin
[~ MoMul DOSSEG

[‘wamnif Dups

™ Delete EXE/DLL on Ermor
[T Create lmpDef

[FizDS

i~ Resource Options
= Keep Seaments i DER T
I~ Requires Windows 3.0
™ Requires Windows 3.1

Make
External Make
Librarian

I | Gerierate Tmpor Litiran!

Aligrment |

™ Import Lib Page Size: |‘I B
BEigse] |

Current Option Set:

| ket fran Erojest |

EntroPait I

Cancel |

o]

ProSoft Technology, Inc.
February 20, 2013

Page 19 of 94

Setting Up Your Development Environment

PLX-ADMNET ¢ 'C' Programmable
Developer Guide

Ethernet Module

24 Click Packing & Map File from the Topics field and ensure that the options
match those shown in the following screen:

Project Settings

Target Bl-lildl Option Sets I Directories |

Code Optimizations

EIDCmﬂilerG . — Packing
ode Generation
Header Files ™ win Pack ¥ Pack Code: I81 92
Mermnony Models
1 " ExePack [V | Pack Data: [5192

‘windows Prolog/E pilag

W Smart Linking

Olutput
Warings :
Drebug Infarmation ~MapFile
" NoMap £ Segment Map & Detailed Segment Map

Segments
Imports/E sports

— Map File Options

Resource Compiler
I ake [Crosz Reference e
Ei’*btz[?:rLMake W e ™ Saorted by Address
- & Sorted by Address and Mame
™ Group Infarmation

Current Option Set;

[SBadmrsi.0PN
|rtrerit o Froject |
ok I

Cancel |

25 Click Make from the Topics field and ensure that the options match those
shown in the following screen:

Project Settings

Target BU“dl Option Sets | Directaries |

Compiler .
Coads Generation * |ze IDDE Make " Use Extemnal Make Fils
Header Files ~ IDDE Make Options

26 Click OK.

Memaory Modelz

Code Optimizations

‘windows Prolog/E pilag

Output

Wiarmings

Debug Information

Linker

Packing & Map File

Definitions
Segments
Imports/E wports

Regource Compiler
External Make
Librarian

Current Option Set:

| ket fran Erojest |

V' Track Dependencies

™ Track System Includes

[~ On Emor Continue Unrelated
¥ Ignore Enmars in Build

Bnlderder. |
Link Order... |

|— Multitasking
© MNone

£~ Frequent * Moderate

i~ MetBuild

™ Use NetBuild I Use Hemote Headers

o Lirecton:

Hemate Fasswnnd

Cancel

o]

27 Click Parse — Update All from the Project Window Menu. The new settings
may not take effect unless the project is updated and reparsed.
28 Click Project — Build All from the Main Menu.

ProSoft Technology, Inc.

Page 20 of 94
February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

29 When complete, the build results will appear in the Output window:

Dutput

=| Edit _ Stopl

3C .. WMYIS6-ADM-SERTAL-OUT MY ISGADM-ZerialOut.c -p -ml -otcnp —o+cp -o+da -o+dc -o+dv -otcse -o4li -o+liv -otloop -otreq —o+vbe -3 -al -No -c -0..\WYISE-ADM-SERIAL-OUT\MVIS6ADM-SerialOut,
link /PACKD:8192 /PAC:8192 /00 /PACKF /XM @5Badm-so.LHE

Error: C:\ADM_TOOL_MYI\SAMPLES\HYISE-SAHPLES\MYIS6-ADM\HY IS6-ADM-SERTAL~INY. . \MYI56-ADM-SERLAL-OUTAHVIBPAPL. LIB{util) : Previous Definition Different : B0elay_x_lmsSqus

Error: C:AADM_TOOL_MYINSAMPLES WMV ISE-SARPLES \MYISE-ADM MY ISE-ADM-SERTAL~INN. . MW ISE-ADM-SERIAL-OUTNHVIBPAPL. LIE(util) : Previous Definition Different : BDelay_x 10usSqul

ren . W$SCUS.EXE SBadm-s0.EXE

A\FBadn-50.EXE built

Lines Processed: 3108 Errors: 2 MWarnings: 0

Build failed |

4l =]

The executable file will be located in the directory listed in the Compiler Output
Directory box of the Directories tab (that is, C\ADM_TOOL_PLX\SAMPLES\...).
The Project Settings window can be accessed by clicking Project — Settings
from the Main Menu.

Porting Notes: The Digital Mars compiler classifies duplicate library names as Level 1 Errors
rather than warnings. These errors will manifest themselves as "Previous Definition Different:
function name". Level 1 errors are non-fatal and the executable will build and run. The architecture
of the ADM libraries will cause two or more of these errors to appear when the executable is built.
This is a normal occurrence. If you are building existing code written for a different compiler you
may have to replace calls to run-time functions with the Digital Mars equivalent. Refer to the Digital
Mars documentation on the Run-time Library for the functions available.

3.1.2 Configuring Borland C++5.02

The following procedure allows you to successfully build the sample ADM code
supplied by ProSoft Technology, using Borland C++ 5.02. After verifying that the
sample code can be successfully compiled and built, you can modify the sample
code to work with your application.

Note: This procedure assumes that you have successfully installed Borland C++ 5.02 on your
workstation.

Downloading the Sample Program

The sample code files are located in the ADM_TOOL_PLX.ZIP file. This zip file is
available from the CD-ROM shipped with your system or from the
www.prosoft-technology.com web site. When you unzip the file, you will find the
sample code files in \ADM_TOOL_PLX\SAMPLES\.

ProSoft Technology, Inc. Page 21 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Setting Up Your Development Environment
Ethernet Module Developer Guide

Building an Existing Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, then click Project > Open Project from the Main
Menu.

Open Project File 21xl

File: M ame: Directoies: oK,

ok]
Cancel |

c:hadmisample

[o

ADK. PR (= ADM
= SAMPLE
£ inc
b
Wigwer Drives:

I-Default Yigwer- j IIEC: j Metwork. .. |

List Files of Type:
| Praject iles [*ide.* pri) |

2 From the Directories field, navigate to the directory that contains the project
(C:\adm\sample).

3 Inthe File Name field, click on the project name (adm.ide).

4 Click OK. The Project window appears:

~[libvadmapi.lib [.1lib]

~[O libscipapi.lib [.1lib]
[libavibpspi.lib [.1ib]
[lib“mviscapi.lib [.lih]

~[O libmvispapi.lib [.1ihk]
0 commdrw.c [.cl

[debugprt.c [.c]
~0 mvictg.c [.c]
~0 main_app.c [€]

5 Click Project - Build All from the Main Menu to create the .exe file. The
Building ADM window appears when complete:

" Building ADM - Complete o)1

Status; Success |

Funning

Pragram: CABCEABIMtink. exe
Command line: @C:WADMASAMPLEVADM. 13p
Infarmation: Elapsed Time: 2531 Seconds

Statistics Total Current
Lines: 17535 1]
\wiarnings: 1] 1]
Errors: 1} 1]

6 When Success appears in the Status field, click OK.

Page 22 of 94 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment

Developer Guide

PLX-ADMNET ¢ 'C' Programmable

Ethernet Module

The executable file will be located in the directory listed in the Final field of
the Output Directories (that is, C:\adm\sample). The Project Options window
can be accessed by clicking Options - Project Menu from the Main Menu.

§'+‘ Project Options

Topics:

- Directonies
o Compiler
01 E-bit Compiler
qh32-bit Compiler
B C++ Options
oh 0 ptirizations
oM eszages
arLinker

= Librarian
qrResources
= Build Attributes
= Make

Set paths for input and output files

Directories

2]

] Directories

_RES] are placed.

— Source Directories:

Thiz zection letz you tell Borland C++ where to look for source,
include, and library files. The output directaries contral where
intermediate files [[OBJ, .RES] and final files [.EXE. .DLL,

Irciude: Ic::\ch\incIude;c:\adm\sample\inc ﬂ

Libramy: |c: WbeAhib;c:hadmhzampleblib j
Source: Ic:: Sadm_wrkghsample j

— Output D rectories:
Intermediate: |c: hadmhzample j
Final: |c: admbzample j

v oK I‘UndoPagel x Eancell ? Hep |

Creating a New Borland C++ 5.02 ADM Project

1 Start Borland C++ 5.02, and then click File — Project from the Main Menu.

2 Type in the Project Path and Name. The Target Name is created

g?*? New Target ﬂll
— Project Path and Mame:
v K
Ic:\adm\sample\my_proi.ide
C |
— Target Mame: x anee |
Im_l,l_proi EE_ Brawse |
- Target Type: & Advanced |
Frameworks:
Dynamic Library [di] (¥ Class Library 2 Hep |
Easywin [.exe]
Static Library [for xe) [.ib] Math Suppert: ————————
Static Library [for .dll] [ib] € Floating Paint
Impart Library [ib] = & Eriation
" None
Platfarm:
Libraries:
’7 I~ MoEwsceptions [~ BGI

Large j

| [Alemate Startup [Diagnostic |

automatically.
3 Inthe Target Type field, choose Application (.exe).
4 In the Platform field, choose DOS (Standard).
5 Inthe Target Model field, choose Large.

ProSoft Technology, Inc.

February 20, 2013

Page 23 of 94

PLX-ADMNET ¢ 'C' Programmable Setting Up Your Development Environment
Ethernet Module

Developer Guide

6 Ensure that Emulation is checked in the Math Support field.
7 Click OK. A Project window appears:

=10 x|
He |

« B-O0% nvy_proj . exe [e
B}y roj . cop [Lopp]

Click on the .cpp file created and press the Delete key. Click Yes to delete
the .cpp file.

Right click on the .exe file listed in the Project window and choose the Add
Node menu selection. The following window appears:

&7 Add to Project List 2|
Lok in: | {23 SAMPLE = « &k E-
|_linc
i
2] commpry.
| DEBUIGPRT.C
] MAIN_app.C
| MvIcFE.C
File name: Imy_proi.c:pp j Open I
Files of type: |C++ source [*.cpp.c) j Cancel |
7|

10 Click source file, then click Open to add source file to the project. Repeat this
step for all source files needed for the project.

11 Repeat the same procedure for all library files (.lib) needed for the project.

Page 24 of 94 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

12 Choose Libraries (*.lib) from the Files of Type field to view all library files:

Lookin: [3 i | e ®EckEr

ADMAPLLIB
CIPAPILIB
Histary MVIEPAPL LB

. MVISCAPLLIE
,@? MVISPAPLLIE

File name: j Open I
Files of type: Libraries [*lib] Cancel |
p/

13 The Project window should now contain all the necessary source and library
files as shown in the following window:

[libsadmapi.lib [.1lib]
[libscipapi.lib [.1lib]
[libsmvibpapi.lib [.1lib]
[libsmviscapi. lib [.1ib]
[libsmvispapi.lib [.1lib]
[commdrwv .o [.c]

[debugprt.c [.c]

[mvicfg.c [.c]

TR B main_app.c [.c]

ProSoft Technology, Inc. Page 25 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable

Ethernet Module

Setting Up Your Development Environment

Developer Guide

14 Click Options — Project from the Main Menu.

§'+‘ Project Options

Topics:

- Directories
P Compiler
o1 6-bit Compiler
b 32-bit Compiler
B+ Options
ok 0 phimizations
dhMeszages
arLinker

o Librariat
ArResources

= Build Attributes
= Make

Set pathz for input and output files

Directories

2]

Directories

include, and library files. The output directories contral where
intermedide files [OBJ, .RES] and final files [EXE, .DLL,
.RES] are placed.

Thiz section lets you tell Borland C++ where to look for source,

— Source Directories:

Include: Ic:\ch\incIude
Library: [c:4bc5hin

LelLefLel

Saource: I

— Output Drectories:

Intermediate: I

LedLed

Final: I

v ak I’Undopagel x Cancell 2 Heb |

15 Click Directories from the Topics field and fill in directory information as
required by your project’s directory structure.

qR 1 6-bit Campiler
qh 32-bit Campiler
qRC++ Options
50 0 ptimizations
qhM eszages
eRLinker

= Librarian
ARResources

= Build Attributes
= Make

The output directary for pour EXE,
.DLL, and .M&P files

&' Project Options ed |
Topics: Directories
@ Directories
ch Compiler Directories

include, and library files. The output directaries control where
intermediate files [[0BJ, .RES] and final files [.EXE. .DLL,
.RES] are placed,

Thiz zection letz pou tell Borland C++ where to look for source,

— Source Directories:

Irclude: |c:\bcE\incIude;c:\adm\sample\inc j
Library: Ic:: WbeBhibye:admb samplehlib j

Saurce: Ic:: admhzampletmp_proj j

— Output Drectories:

Intermediate: Ic:: Sadmbzampletmy_projout j

Final: IC: Sadmbzampletmy_projhou j

v 0K I‘UndoF’agel x Cancell 2 Hep |

Page 26 of 94

ProSoft Technology, Inc.

February 20, 2013

Setting Up Your Development Environment

Developer Guide

PLX-ADMNET ¢ 'C' Programmable

Ethernet Module

16 Double-click on the Compiler header in the Topics field, and choose the
Processor selection. Confirm that the settings match those shown in the
following screen:

§+‘ Project Options

Topics:

= Directonies
o Compiler
=1E-bit Compiler

= Calling Convention
= Memory Model
2 Segment Mames Data
@ Segment Mames Far Data
* Segment Mames Code
2 Entr/Exit Code

ok 32-Lil Connpiler

R C++ Optiong

o O ptirnizations

dhM eszages

arLinker

= Librarian

ARResources

= Build Attributes

= Make

Select a target processor

Processor

g 3

— Instruction set:
8086
80186
80286
* 80286
486

— D ata alignment:
= Byte
 Weed

V 1] 3 I‘UndoF‘agEl x Eancell 2 Hep |

17 Click Memory Model from the Topics field and ensure that the options match
those shown in the following screen:

18 Click OK.

19 Click Project — Build All from the Main Menu.

s:'+‘ Project Options

T opics:

= Directonies

o Compiler

=16-bit Cornpiler
= Processor

o Callini Convention

@ Segment Mames Data
@ Segment Mames Far Data
= Segment Mames Code
= Entr/Exit Code

=R 32-bit Compiler

2R C++ Optiors

=h O ptimizations

frMessages

SRLinker

= Librarian

TFResources

= Build Attributes

= Make

Select a memory model [refer to
T argetE=pert for application model]

Memany Madel
 Mixed Model O verride:
= Tiny
= Smal
™ Medium
" Compact
@ Large
" Huge

2]

Azzume 55 Equals DS ——
& Default
= Newer
 Always

— Options:

[~ Far virtual tables
[T Fast huge pointers
[~ Automatic far data

™ Put constant strings in code segments

Far Data Threshold: |32?B? Vl

v oK I‘UndoPagel x Eancell 2 Hep |

ProSoft Technology, Inc.

February 20, 2013

Page 27 of 94

PLX-ADMNET ¢ 'C' Programmable

Setting Up Your Development Environment
Ethernet Module

Developer Guide

20 When complete, the Success window appears:

" Building ADM - Complete 181 x1

| Status: Success |

Fiunning

Program: CABCEABIMtink. exe
Command ling: &EC:\ADMASAMPLENADM . 13p
Infarmation: Elapsed Time: 2.531 Seconds

Statistics Tatal Current
Lines: 17535 1]
\wiarnings: 1] 1]
Errors: 1} 1]

21 Click OK. The executable file will be located in the directory listed in the Final
box of the Output Directories (that is, C:\adm\sample). The Project Options

window can be accessed by clicking Options — Project from the Main
Menu.

3.2 Downloading Files to the Module

1 Connect your PC’s COM port to the ProLinx Configuration/Debug port using
the Null Modem cable and ProLinx Adapter cable.

2 From the Start Menu on your PC, select Programs — Accessories —
Communications — HyperTerminal. The New Connection Screen appears:

Tz New Connection - HyperTerminal

(=] 3
File Edit ‘Wiew Call Transfer Help
D|=| 53] =0ls| =
=
Connection Description ﬂil
Enter a name and choose an icon for the connection:
M amme:
|reload
lzon:
—¥)
=
oK I Cancel |
L]
Disconnected Auko detect Auto dekect SCROLL |CAPS |I'\UM |Capture Print echo 4

Page 28 of 94 ProSoft Technology, Inc.

February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

3 Enter a name and choose OK. The Connect To window appears:

Connect To llll

- reload

Enter details for the phone number that you want to dial:

Country/regiar: IUnited States of America [1] j

Area code: BE1

Phone nurnber: I

Connectusing: | EETTTRE - |
oK I Canecel |

4 Choose the COM port that your ProLinx module is connected to and choose
OK. The COML1 Properties window appears.

COM1 Properties 21
Port Settings |
Bitz per second: IS?BDD j
Databits: |8 =]
Parity: INone j
Stop bits: |1 =l
Flow contral: lﬁ

Restare Defaults |
Ok I Cancel | Aol I

5 Ensure that the settings shown on this screen match those on your PC.

6 Click OK. The HyperTerminal window appears with a DOS prompt and
blinking cursor.

ProSoft Technology, Inc. Page 29 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Setting Up Your Development Environment
Ethernet Module Developer Guide

7 Apply power to the ProLinx module and hold down the [L] key. The screen
displays information and ultimately displays the Loader menu:

#g loadertest - HyperTerminal i] 4]
File Edit WYiew Call Transfer Help

Portions written by Morien W. Roberts

Packet driver skeleton copyright 1988-93, Crynuwr Software

This program is freely copvable; source must be auallable NO WARRANTY.

See the file COPYING.DOC for details; send FAX to +1-315- 268-9201 for a copy.

Packet Driver did not load

=xx Packet driver failed to initialize the board ===

PROLINY 4100 MODULE LOADER (2.41):
{c) 1999-20082, Prolinx Communication Gateways, Inc.

PROLINY 41088 MODULE PROGRAM LOADER MENU (VYersion 2.41)
{c) 1999-2002, Prolinx Communication Gateways, Inc.

Display this menu

Display Module VYersion Information

Configuration File {.cfg) - Download File to Module
WATTCP (Ethernet) Configuration - Download File to Module
Upgrade module Executable file

Exit Menu and Reboot module

[l e B -~ |

Esc

Enter Selection {?.V,C,W,U,Esc)>

&l‘l

Connected 0:01:05 [#uto detect 57600 8-N-1 [sCcRoLL [CAPS wum [Capture [Print echo

This menu provides options that allow you to download a configuration file [C], a
WATTCP file [W], or a new executable file [U]. You can also press [V] to view
module version information.

1 Type [U] at the prompt to transfer executable files from the computer to the
ProLinx unit.

2 Type [Y] when the program asks if you want to load an .exe file.

3 From the HyperTerminal menu, select Transfer — Send.

#greload - HyperTerminal
File Edit WView Call | T-ansfer Help

—J—J,_J_J‘£ send Fik... [:
-

Receive File. ..,

Capture Texk...
‘*** Packet sendTextFie...
PR[]I TNH | []I Capture ko Prinker

Page 30 of 94 ProSoft Technology, Inc.
February 20, 2013

Setting Up Your Development Environment PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

4 When the Send To screen appears, browse for the executable file to send to
the module. Be sure to select Y Modem in the Protocol field.

i 5end File ﬂll
Folder: C:\Loader

Filename:

IC:\Loader\dfntdfcm.cfg
Protocal:

IYmodem j

Send | Cloze | Cancel |

5 Click Send. The program loads the new executable file to the ProLinx
module. When the download is complete, the program returns to the Loader
menu.

If you want to load a new configuration file or a WATTCP file, select the
appropriate option and perform the same steps to download these files.

6 Press[Esc], then [Y] to confirm module reboot.

ProSoft Technology, Inc. Page 31 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Setting Up Your Development Environment
Ethernet Module Developer Guide

Page 32 of 94 ProSoft Technology, Inc.
February 20, 2013

Understanding the PLX-ADMNET API PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

4 Understanding the PLX-ADMNET API

In This Chapter

9 APTLIDIANES ..o 33
s DevelopmeNt TOOIS . ..o 34
s Theory of OPerationccvveiiieiiiiiiiiie e 35
@ ADM AP FIlES et 35

The PLX ADM API Suite allows software developers access to the top layer of
the serial and Ethernet ports. The PLX-ADMNET API suite accesses the
Ethernet port. Both APIs can be easily used without having detailed knowledge of
the module’s hardware design. The PLX ADMNET API Suite consists of the
Ethernet Port API. The Ethernet Port API provides access to the Ethernet
network.

Applications for the PLX ADMNET module may be developed using industry-
standard DOS programming tools and the appropriate APl components.

This section provides general information pertaining to application development
for the PLX ADMNET module.

41 APl Libraries

Each API provides a library of function calls. The library supports any
programming language that is compatible with the Pascal calling convention.

Each API library is a static object code library that must be linked with the
application to create the executable program. It is distributed as a 16-bit large
model OMF library, compatible with Digital Mars C++ or Borland development
tools.

Note: The following compiler versions are intended to be compatible with the PLX module API:
Digital Mars C++ 8.49

Borland C++ V5.02

More compilers will be added to the list as the APl is tested for compatibility with them.

4.1.1 Calling Convention

The API library functions are specified using the 'C' programming language
syntax. To allow applications to be developed in other industry-standard
programming languages, the standard Pascal calling convention is used for all
application interface functions.

ProSoft Technology, Inc. Page 33 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Understanding the PLX-ADMNET API
Ethernet Module Developer Guide

4.2

4.1.2 Header File

A header file is provided along with each library. This header file contains API
function declarations, data structure definitions, and miscellaneous constant
definitions. The header file is in standard 'C' format.

4.1.3 Sample Code

A sample application is provided to illustrate the usage of the API functions. Full
source for the sample application is also provided. The sample application may
be compiled using Digital Mars or Borland C++.

4.1.4 Multithreading Considerations

The DOS 6-XL operating system supports the development of multi-threaded
applications.

Note: The multi-threading library kernel.lib in the DOS folder on the distribution CD-ROM is
compiler-specific to Borland C++ 5.02. It is not compatible with Digital Mars C++ 8.49. ProSoft
Technology, Inc. does not support multi-threading with Digital Mars C++ 8.49.

Note: The ADM DOS 6-XL operating system has a system tick of 5 milliseconds. Therefore, thread
scheduling and timer servicing occur at 5ms intervals. Refer to the DOS 6-XL Developer’s Guide
on the distribution CD-ROM for more information.

Multi-threading is also supported by the API.

= DOS libraries have been tested and are thread-safe for use in multi-threaded
applications.

= MViIsp libraries are safe to use in multi-threaded applications with the
following precautions: If you call the same MVIsp function from multiple
threads, you will need to protect it, to prevent task switches during the
function's execution. The same is true for different MVIsp functions that share
the same resources (for example, two different functions that access the
same read or write buffer).

WARNING: ADM and ADMNET libraries are not thread-safe. ProSoft Technology, Inc. does not
support the use of ADM and ADMNET libraries in multi-threaded applications.

Development Tools

An application that is developed for the PLX-ADMNET module must be stored on
the module’s Flash ROM disk to be executed. A loader program is provided with
the module, to download an executable, configuration file or wattcp.cfg file via
module port 0, as needed.

Page 34 of 94 ProSoft Technology, Inc.

February 20, 2013

Understanding the PLX-ADMNET API PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

4.3

Theory of Operation

4.3.1 ADM API

The ADMNET API is one component of the PLX ADM API Suite. The ADMNET
API provides a simple module-level interface that is portable between members
of the PLX Family. This is useful when developing an application that implements
a serial-Ethernet protocol for a particular device, such as a scale or bar code
reader. After an application has been developed, it can be used on any of the
PLX family modules.

4.3.2 ADMNET API Architecture

The ADMNET API is composed of a statically-linked library (called the ADMNET
library). Applications using the ADMNET API must be linked with the ADMNET
library.

The following illustration shows the relationship between the APl components.

Application
ADM & ENET API

SP API | BP or CIP API

4.4 ADM API Files
The following table lists the supplied API file names. These files should be copied
to a convenient directory on the computer where the application is to be
developed. These files need not be present on the module when executing the
application.
File Name Description
ADMNETAPI.H Include file
ADMNETAPI.LIB Library (16-bit OMF format)
ProSoft Technology, Inc. Page 35 of 94

February 20, 2013

PLX-ADMNET ¢ 'C' Programmable

Ethernet Module

Understanding the PLX-ADMNET API
Developer Guide

4.4.1 ADM Interface Structure

The ADMNET interface structure functions mainly as a protocol UDP and TCP
socket. Pointers to structures are used so that the API can access lower-level
Ethernet communication. The ADMNET API requires the interface structure and
the structures referenced by it. Refer to the example code section for examples
of the functions.

The interface structure is as follows:

typedef struct

_tcp socket {

struct _tcp socket *next;
word ip type; // always set to TCP_PROTO
char *err msg;
char *usr name;
void (*usr_yield) (void);
byte rigid;
byte stress;
word sock mode; // a logical OR of bits
longword usertimer; // ip timer set, ip timer timeout
dataHandler t dataHandler; // called with incoming data
eth address hisethaddr; // ethernet address of peer
longword hisaddr; // internet address of peer
word hisport; // tcp ports for this connection
longword myaddr;
word myport;
word locflags;
int queuelen;
byte *queue;
int rdatalen; // must be signed
word maxrdatalen;
byte *rdata;
byte rddata[tcp MaxBufSize+l]; // received data
longword safetysig;
word state; // connection state
longword acknum;
longword seqgnum; // data ack'd and sequence num
long timeout; // timeout, in milliseconds
byte unhappy; // flag, indicates retransmitting
segt's
byte recent; // 1 if recently transmitted
word flags; // tcp flags word for last packet sent
word window; // other guy's window
int datalen; // number of bytes of data to send
// must be signed
int unacked; // unacked data
byte cwindow; // Van Jacobson's algorithm
byte wwindow;
Page 36 of 94 ProSoft Technology, Inc.

February 20, 2013

Understanding the PLX-ADMNET API

PLX-ADMNET ¢ 'C' Programmable

Developer Guide Ethernet Module
word vj_ sa; // VJ's alg, standard average
word vj sd; // VJ's alg, standard deviation
longword vj last; // last transmit time
word rto;
byte karn count; // count of packets
byte tos; // priority

// retransmission timeout procedure
// these are in clock ticks

longword rtt lasttran; // last transmission time
longword rtt smooth; // smoothed round trip time
longword rtt_delay; // delay for next transmission
longword rtt_time; // time of next transmission
word mss;
longword inactive to; // for the inactive flag
int sock delay;
byte dataltcp MaxBufSize+l]; // data to send

} tcp_Socket;

typedef struct udp socket {
struct _udp_socket *next;
word ip type; // always set to UDP_PROTO
char *err msg; // null when all is ok
char *usr_ name;
void (*usr yield) (void);
byte rigid;
byte stress;
word sock mode; // a logical OR of bits
longword usertimer; // ip timer set, ip timer timeout
dataHandler t dataHandler;
eth address hisethaddr; // peer's ethernet address
longword hisaddr; // peer's internet address
word hisport; // peer's UDP port
longword myaddr;
word myport;
word locflags;
int queuelen;
byte *queue;
int rdatalen; // must be signed
word maxrdatalen;
byte *rdata;
byte rddata[tcp MaxBufSize 1]; // if dataHandler = 0, len == 512
longword safetysig;

} udp_Socket;

ProSoft Technology, Inc.
February 20, 2013

Page 37 of 94

PLX-ADMNET ¢ 'C' Programmable Understanding the PLX-ADMNET API
Ethernet Module Developer Guide

Page 38 of 94 ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADMNET API
Developer Guide

PLX-ADMNET ¢ 'C' Programmable
Ethernet Module

5 Application Development Function Library -

ADMNET API

In This Chapter

< ADMNET API Functions
< ADMNET API Initialize Functions

< ADMNET API Release Socket Functions

< ADMNET API Send Socket Functions

< ADMNET API Receive Socket Functions

< ADMNET API Miscellaneous Functions

5.1 ADMNET API Functions

This section provides detailed programming information for each of the ADMNET
APl library functions. The calling convention for each API function is shown in 'C'

format.

The same set of API functions is supported for all of the modules in the PLX

family.

API library routines are categorized according to functionality.

Function Category Function Name

Description

Initialize Socket ADM_init_socket

Initialize number of sockets used on
each port number and assign name to
each port.

ADM_open_sk

Open and reopen each socket
separately after socket is initialized or
closed.

Release Socket ADM_release_sockets

Release all sockets that have been
initialized using ADM_init_socket.

ADM_close_sk

Close each socket separately without
release socket.

Send Socket ADM_send_socket

Send socket according to hame assign
throughout initialization process as
either UDP or TCP. This function also
takes care of opening socket
connection.

ADM _send_sk

Send socket with previously open with
function ADM_open_sk.

ProSoft Technology, Inc.
February 20, 2013

Page 39 of 94

PLX-ADMNET ¢ 'C' Programmable Application Development Function Library - ADMNET API

Ethernet Module

Developer Guide

Function Category Function Name

Description

Receive Socket ADM_receive_socket

Receive socket according to name
assigned throughout initialization
process as either UDP or TCP. This
function also takes care of opening
socket connection.

ADM_receive_sk

Receive socket with previously open
with function ADM_open_sk.

Miscellaneous ADM_NET_GetVersioninfo

Get ADMNET API version information.

ADM _is_sk_open

Test if the socket is still open.

Page 40 of 94

ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADMNET API PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

5.2

ADMNET API Initialize Functions
The following topics describe the ADMNET API Initialize functions.

ADM init_socket

Syntax

int ADM init socket (int numSK, int portNum, int buffSize, char *name);

int numSK = 5;
int portNum =

Parameters

numSK Variable indicating how many sockets to use.
portNum Port Number.

buffSize The size of the buffer available in each socket.
name The name of the socket.

Description

ADM_init_socket acquires access to the ADMNET API and dynamically
generates a set of sockets according to numSK and assigns portNum, buffSize,
then names each socket that the application will use in subsequent functions.
This function must be called before any of the other API functions can be used.

IMPORTANT After the API has been opened, ADM_Release_Sockets should always be called
before exiting the application.

Return Value

SK_SUCCESS API has successfully initialized variables.

SK_PORT_NOT_ALLOW API does not allow port number used.

SK_CANNOT_ALLOCATE_MEMORY API cannot allocate memory.

Example

5757;

int buffSize = 1000;

if (ADM init socket (numSK, portNum, buffSize, "ReceiveSK") != SK SUCCESS)

{

printf ("\nFailed to open ADM API... exiting program\n");
ADM release sockets();

See Also

ADM_release_sockets (page 43)

ProSoft Technology, Inc. Page 41 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Application Development Function Library - ADMNET API
Ethernet Module Developer Guide

ADM_open_sk

Syntax

int ADM open sk (char *skName, char *ServerIPAddress, int protocol);

Parameters

skName Name of the socket that has been initialized and used to send data.
ServerlPAddress IP address that will be used to send data to.

protocol Specified protocol to send over Ethernet (USE_TCP or USE_UDP).

Description

ADM_open_sk opens a socket according to the name previously initialized,
skName, with ADM _init_socket given, and assigns IP address, ServerlPAddress
for send function with specific protocol, either UDP or TCP. ADM_init_socket
must be used before this function.

IMPORTANT: After the API has been opened, ADM_close_sk should always be called for closing
the socket. 0.0.0.0 passes as ServerlPAddress to open socket as a server to listen to a message
from client.

Return Value

SK_SUCCESS API has successfully opened socket.
SK_PROCESS_SOCKET Open is still in process.
SK_NOT_FOUND API could not find an initialized socket with the name passed to the
function.

SK_TIMEOUT Time out opening socket.
SK_OPEN_FAIL Socket could not be opened.
Example

char sockNamel[] = "SendSocket";

int buffSizel = 4096;

int port 1 = 6565;

int numSocketl = 1;

int result;

sock init(); //initialize the socket interface

ADM init socket (numSocketl, port 1, buffSizel, sockNamel);

while ((result = ADM open_ sk (sockNamel, "0.0.0.0",
USE TCP))==SK PROCESS SOCKET) ;

if (result==SK SUCCESS)
{
printf ("successfully Opened a connection!\n");
} else {
printf ("Error Opening a connection! %d\n", result);

}

See Also
ADM_close_sk (page 44)

Page 42 of 94 ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADMNET API PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

5.3 ADMNET API Release Socket Functions

This section describes the ADMNET API| Release Socket Functions.

ADM release_sockets

Syntax

int ADM release sockets(void);

Parameters

none

Description

This function is used by an application to release all sockets created by
ADM_init_socket.

IMPORTANT: After a socket has been generated, this function should always be called before
exiting the application.

Return Value
SK_SUCCESS APl was successfully released all the sockets.

Example

ADM release sockets();

See Also
ADM _init_socket (page 41)

ProSoft Technology, Inc. Page 43 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Application Development Function Library - ADMNET API
Ethernet Module Developer Guide

ADM_ close_sk

Syntax

int ADM close sk (char *skName);

Parameters

skName Name of the socket that has been initialized and used
to send data.

Description

This function is used by an application to close socket opened by ADM_open_sk.

IMPORTANT: After a socket has been opened, this function should always be called to close
socket, but not release socket.

Return Value

SK_SUCCESS API was successfully released all the sockets.

SK_NOT_FOUND API could not find an initialized socket with the name
passed to the function.

Example

char sockNamel[] = "SendSocket";

ADM close sk (sockNamel) ;
printf ("Connection Closed!\n");

See Also
ADM _init_socket (page 41)

Page 44 of 94 ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADMNET API PLX-ADMNET ¢ 'C' Programmable

Developer Guide

Ethernet Module

54 ADMNET API Send Socket Functions

This section describes the ADMNET API Send Socket functions.

ADM_send_socket

Syntax

int ADM send socket (char *skName, char *holdSendPtr, int *sendLen, char
*ServerIPAddress, int protocol);

Parameters

skName Name of the socket that has been initialized and used to
send data.

holdSendPtr Pointer to a string of data that will be sent to the
ServerlPAddress

sendLen Number of data specified to send.

ServerlPAddress

IP address that will be used to send data to.

protocol

Specified protocol to send over Ethernet (USE_TCP or
USE_UDP).

Description

To simplify a program, this function opens connection and sends message.
skName must be a valid name that has been initialized with ADM_init_socket.

Return Value

SK_SUCCESS

Socket is successfully sent.

SK_NOT_FOUND

Socket could not be found.

SK_PROCESS_SOCKET

Socket is in the process of sending.

Example

int sendLen = 10;
int se;

se = ADM send socket ("sendSK",
USE_UDP) ;
if (se == SK_SUCCESS)
{
printf ("send Success\n");

}

See Also

"1234567890", é&sendLen, "192.168.0.148",

ADM_receive_socket (page 47)

ProSoft Technology, Inc.
February 20, 2013

Page 45 of 94

PLX-ADMNET ¢ 'C' Programmable Application Development Function Library - ADMNET API
Ethernet Module Developer Guide

ADM_send_sk

Syntax

int ADM send sk(char *skName, char *holdSendPtr, int *sendLen);

Parameters

skName Name of the socket that has been initialized and used
to send data.

holdSendPtr Pointer to a string of data that will be sent to the
ServerlPAddress

sendLen Number of data specified to send.

Description

ADM _ send _sk sends with a socket previously open using ADM_open_sk.

Return Value

SK_SUCCESS API has successfully open socket.
SK_PROCESS_SOCKET Open process is still in
SK_NOT_FOUND API could not find an initialized socket with the name

passed to the function.

Example

char sockNamel[] = "SendSocket";
char holdingReg[100];

int buffSizel = 4096;

int port 1 = 6565;

int numSocketl = 1;

int result;

sock init(); //initialize the socket interface
ADM init socket (numSocketl, port 1, buffSizel, sockNamel);

sprintf (holdingReg, "abcdefghijklmnopgrstuvwxyz-") ;
sendLen = 27;

while ((result = ADM send sk (sockNamel, holdingReg, &sendLen)) ==
SK_PROCESS SOCKET) ;

if (result == SK SUCCESS)

{

printf ("Data: %s Sent \n", holdingRegq);
} else {

printf ("Error sending data\n");

}

See Also
ADM_receive_sk (page 48)

Page 46 of 94 ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADMNET API PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

5,5 ADMNET API Receive Socket Functions

This section describes the ADMNET API Receive Socket functions.

ADM receive_socket

Syntax
int ADM receive socket (char *skName, char *holdRecPtr, int *readLen, int
protocol) ;
Parameters
skName Name of the socket that has been initialized and used to receive data.
holdRecPtr Pointer to a buffer to hold data that will be received by the API.
readLen Length of data received by the API.
protocol Specified protocol to receive over Ethernet (USE_TCP or USE_UDP).
Description

To simplify a program, this function opens connection and receives message.

Return Value

SK_SUCCESS Socket is successfully sent.
SK_NOT_FOUND Socket could not be found.
SK_PROCESS_SOCKET Socket is in the process of sending.

Example

char hold[5000];
int readlLen;
int se, 1i;

se = ADM receive socket ("receiveSK", holdingReg, &readLen, USE UDP);
if (se == SK_SUCCESS)
{
printf ("Length == %$d\n", readLen);
for (i=0; i<readLen; i++)
{
printf ("$02X ", *(holdingReg+i));
if(1%10 == 0) printf("\n");
}
printf ("\n");

See Also
ADM_send_socket (page 45)

ProSoft Technology, Inc. Page 47 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Application Development Function Library - ADMNET API
Ethernet Module Developer Guide

ADM receive_sk

Syntax

int ADM receive sk(char *skName, char *holdRecPtr, int *readLen, char *fromIP);

Parameters

skName Name of the socket that has been initialized and used to receive data.
holdRecPtr Pointer to a buffer to hold data that will be received by the API.
readLen Length of data received by the API.

fromIP Pointer to character array which in turn return with client IP.
Description

This function receives socket after ADM_open_sk is used. skName must be a
valid name that has been initialized with ADM_init_socket.

Return Value

SK_SUCCESS Socket is successfully sent.
SK_NOT_FOUND Socket could not be found.
SK_PROCESS_SOCKET Socket is in the process of sending.
SK_TIMEOUT Time out opening socket.
Example

char sockNamel[] = "SendSocket";

char holdingReg[100];
int result;

while ((result=ADM receive sk (sockNamel, holdingReg, &readLen, fromIP)) ==
SK_PROCESS SOCKET) ;

if (result == SK_SUCCESS) {
printf ("Received data!\n");
printf ("Length == %d\n", readLen);

for (i=0; i<readLen; i++)
{
printf ("%c", *(holdingReg+i));
}
printf ("\n");

} else {
printf ("Received no data Error: %d\n",result);
}
See Also

ADM_send_socket (page 45)

Page 48 of 94 ProSoft Technology, Inc.
February 20, 2013

Application Development Function Library - ADMNET API PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

5.6 ADMNET API Miscellaneous Functions

ADM_NET_GetVersioninfo

Syntax

void ADM NET GetVersionInfo (ADMNETVERSIONINFO* admnet verinfo);

Parameters
admnet_verinfo Pointer to structure of type ADMNETVERSIONINFO.

Description

ADM_GetVersionlInfo retrieves the current version of the ADMNET API library.
The information is returned in the structure admnet_verinfo.

The ADMVERSIONINFO structure is defined as follows:

typedef struct

{
char APISeries[4];
short APIRevisionMajor;
short APIRevisionMinor;
long APIRun;

}ADMNETVERSIONINFO;

Return Value
None

Example

ADMNETVERSIONINFO verinfo;
/* print version of API library */

ADM NET GetVersionInfo (& verinfo);

printf ("Revision %d.%d\n", verinfo.APIRevisionMajor, verinfo.APIRevisionMinor);

ProSoft Technology, Inc. Page 49 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Application Development Function Library - ADMNET API
Ethernet Module Developer Guide

ADM is_sk_open

Syntax

int ADM is sk open(char *skName) ;

Parameters

skName Name of the socket that has been initialized and used to receive data.

Description

ADM _is_sk_open tests if connection is still valid or not.

Return Value

SK_SUCCESS Socket is successfully sent.
SK_NOT_FOUND Socket could not be found.
SK_SOCKET_CLOSE Socket is closed.
Example

char sockNamel[] = "SendSocket";

if (ADM is sk open(sockNamel) != SK SUCCESS) {

printf ("Socket not Opened\n");
} else {

printf ("Socket Opened\n");
}

Page 50 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions
Developer Guide

PLX-ADMNET ¢ 'C' Programmable
Ethernet Module

6 WATTCP API Functions

In This Chapter

< WATTCP API Functions.........cccccevvvvvvvvevenns
< ADMNET API Initialize Functions...............

< ADMNET API System Functionality

< ADMNET API Release Socket Functions
< ADMNET API Send Socket Functions
< ADMNET API Receive Socket Functions

6.1 WATTCP API Functions

This API is a TCP/IP stack, which is used on ADMNET API. Parts of this
document are brought from Waterloo TCP by Erik Engelke. Each section
provides detailed programming information for each WATTCP API library
function. The calling convention for each API function is shown in 'C' format.

The API library routines are categorized according to functionality as shown in

the following table.

Function Category Function Name

Description

Initialize Socket sock_init TCP/IP system initialization.
System Functionality tcp_tick Determine socket connection.
tcp_open & Generate socket session to a host

tcp_open_fast

computer for TCP protocol.
tcp_open_fast will have no wait for if the
host computer is not found.

udp_open &
udp_open_fast

Generate socket session to a host
computer for UDP protocol.
udp_open_fast will have no wait for if the
host computer is not found.

resolve

Convert string IP Address into a
longword.

sock_mode

Setup socket protocol transfer mode for
the particular use (UDP or TCP).

sock_established

Check if connect has been established.

ip_timer_init

Initialize timing.

ip_timer_expired

Check if timer has been expired.

set_timeout

Set timer.

chk_timeout

Check timer if expired.

ProSoft Technology, Inc.
February 20, 2013

Page 51 of 94

WATTCP API Functions
Developer Guide

PLX-ADMNET ¢ 'C' Programmable
Ethernet Module

Function Category

Function Name

Description

sockerr Return ASCII error message if there is
any.
sockstate Return ASCIl message what is the
current state.
gethostid Returned value is the IP address in host
format.
Release Socket sock_exit Release all the TCP/IP system initialized
by sock_init.
sock_abort Abort a connection.
sock_close Close a connection.
Send Socket sock_write & Write data out to a port. sock_fastwrite

sock_fastwrite

will have no check for data written out to
the socket.

sock_flush

Flush data out to the socket to make
sure all the data has been sent.

sock_flushnext

Call before write the data out to make
sure that after write the data out to the
socket, buffer will be flushed.

sock_puts

Put string onto the buffer.

sock_putc

Put a character onto the buffer.

Receive Socket

sock_read & sock_fastread

Read data coming into a port.

tcp_listen Listen to a message coming in to a
specified port.

sock_gets Get String

sock_getc Get Character

sock_dataready

Return the number data ready to be
read.

rip Remove carriage returns and line feeds.
Miscellaneous inet_ntoa Build ASCII representation of an IP

address with a user supply string from
decimal representation of the IP
address.

inet_addr Convert string dot address to host
format.

ntohs Convert network word to host word

htons Convert host word to network word

ntohl Convert network longword to host
longword

htonl Convert host longword to network

longword

Page 52 of 94

ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

6.2 ADMNET API Initialize Functions
The following topics detail the ADMNET API Initialize functions.

sock_init

Syntax

void sock init (void);

Parameters

None

Description

This function will read a stored TCP/IP configuration file and prepare a variable.

Return Value

SK_SUCCESS API has successfully initialized variables.
SK_PORT_NOT_ALLOW API does not allow port number used.
SK_CANNOT_ALLOCATE_MEMORY API cannot allocate memory.

Example

int numSK = 5;
int portNum = 5757;
int buffSize = 1000;

sock init(); //initialize the socket interface

/* initialize each socket */
if (ADM init socket (numSK, portNum, buffSize, "ReceiveSK") != SK SUCCESS)

{
printf ("\nFailed to open ADM API... exiting program\n");
ADM release sockets();

See Also
sock_exit (page 69)

ProSoft Technology, Inc. Page 53 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

6.3 ADMNET API System Functionality
The following topics describe the ADMNET API System Functionality calls.

tcp_tick

Syntax

int tcp tick(sock type *skType);

Parameters

skType Current socket Type or NULL for all sockets.

Description

This function is used by an application to determine the connection status of the
sockets.

Return Value

0 disconnected or reset.
>0 connected.
Example

sock type *socket;

if (tcp_tick(socket)) //check socket

{
printf ("Connected\n") ;

}

Page 54 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

tcp_open

Syntax

int tcp open(tcp Socket *sk, word lPort, longword ina, word port,
dataHandler t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

IPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.
Description

This function opens a TCP socket connection to a host machine using
parameters passed to it. IPort is an option parameter. Most of the time, IPort can
be set to 0. The API will find an available port number for the socket. ina is a host
IP address passed as a longword. Function resolve can be used to convert an IP
address into longword-formatted variable.

Return Value

Connection cannot be made

>0 Connection is made

Example

tcp Socket *socket;

if (tcp_open(socket, 0, resolve("192.168.0.1"), 5656, NULL))

{
printf ("Open Successfully\n");

}

See Also

resolve (page 59)

ProSoft Technology, Inc. Page 55 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

tcp_open_fast

Syntax

int tcp open fast(tcp Socket *sk, word lPort, longword ina, word port,
dataHandler t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

IPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.
Description

This function opens a TCP socket connection to a host machine using
parameters passed to it. For this function, there is no wait to resolve the IP
address. IPort is an option parameter. Most of the time, IPort can be setto 0. The
API will find an available port number for the socket. ina is a host IP address
passed as a longword. Function resolve can be used to convert an IP address
into a longword-formatted variable.

Return Value

Connection cannot be made

>0 Connection is made

Example

tcp Socket *socket;

if (tcp open fast(socket, 0, resolve("192.168.0.1"), 5656, NULL))

{
printf ("Open Successfully\n");

}

See Also

resolve (page 59)

Page 56 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

udp_open

Syntax

int udp open(udp Socket *sk, word lPort, longword ina, word port,
dataHandler t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

IPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.
Description

This function opens a UDP socket connection to a host machine using
parameters passed to it. IPort is an option parameter. Most of the time, IPort can
be set to 0. The API will find an available port number for the socket. ina is a host
IP address passed as a longword. Function resolve can be use to convert an IP
address into a longword-formatted variable.

Return Value

Connection cannot be made

>0 Connection is made

Example

udp_Socket *socket;

if (udp open(socket, 0, resolve("192.168.0.1"), 5656, NULL))

{
printf ("Open Successfully\n");

}

See Also

resolve (page 59)

ProSoft Technology, Inc. Page 57 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

udp_open_fast

Syntax

int udp open fast(tcp Socket *sk, word lPort, longword ina, word port,
dataHandler t datahandler);

Parameters

sk Pointer to the socket that has been initialized.

IPort Local port number.

ina Host IP Address.

port Host port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.
Description

This function opens a UDP socket connection to a host machine using
parameters passed to it. For this function, there is no wait to resolve the IP
address that passes the function. IPort is an option parameter. Most of the time,
IPort can be set to 0. The API will find an available port number for the socket.
ina is a host IP address passed as a longword. Function resolve can be used to
convert an IP address into a longword-formatted variable.

Return Value

Connection cannot be made

>0 Connection is made

Example

udp_Socket *socket;

if (udp open fast (socket, 0, resolve("192.168.0.1"), 5656, NULL))

{
printf ("Open Successfully\n");

}

See Also

resolve (page 59)

Page 58 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

resolve

Syntax

longword resolve(char *name);

Parameters

name String IP Address.

Description

This function converts a string IP Address into a long.

Return Value

longword Value of the IP Address in a long format.

Example
resolve ("192.168.0.1");

ProSoft Technology, Inc. Page 59 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable
Ethernet Module

WATTCP API Functions
Developer Guide

sock_mode

Syntax

word sock mode(sock type *skType, word mode);

Parameters
skType Current socket Type that will be used to set up socket mode.
mode The following is the available mode:
TCP_BINARY 0 default
TCP_ASCII 1 treat as ASCII data
UDP_CRC 0 checksum enable
UDP_NOCRC 2 checksum disable
TCP_NAGLE 0 default
TCP_NONAGLE 4 used for real time application.
Description

This function is used set the socket transfer protocol mode.

Return Value

Current mode.

Example

sock type *socket;

sock mode (socket, TCP_ MODE NONAGLE) ;

Page 60 of 94

ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sock_established

Syntax

int sock established(sock type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description

This function is used check if the socket has been established.

Return Value

Not established.
1 Establish

Example

sock type *socket;

if (sock established(socket))
{

printf ("Socket has been established\n");
}

ProSoft Technology, Inc. Page 61 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

ip_timer_init

Syntax

void ip timer init(sock type *skType, word second);

Parameters

skType Current socket Type that will be used to check the connection.
second Number of second to set the timer. 0 mean no timer out.
Description

This function is used initialize the timer.

Return Value
None

Example

sock type *socket;

ip timer init (socket, 100);

Page 62 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable

Developer Guide

Ethernet Module

ip_timer_expired

Syntax

word ip timer expired(sock type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description

This function is used check if the timer has been expired.

Return Value

1 timer has been expired.

Example

sock type *socket;

if (ip_timer expired (socket))
{
printf ("time’s up\n");

}

ProSoft Technology, Inc.
February 20, 2013

Page 63 of 94

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

set_timeout

Syntax

longword set_timeout(word seconds);

Parameters

seconds Number of second to set the timer.

Description
This function is used set the timer.

Return Value

Number of timeout.

Example

set timeout (100);

Page 64 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

chk_timeout

Syntax
word chk timeout(longword timeout);
Parameters
timeout Number of timeout return from set_timerout.
Description

This function is used check if the time is out.

Return Value

1 timeout
Example
int timeout = set timeout (100);

While (!chk timeout (timeout))
printf ("Not timeout yet\n");

ProSoft Technology, Inc. Page 65 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

sockerr

Syntax

char *sockerr (sock type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description

This function returns ASCII error message if there is any. Otherwise, NULL is
returned.

Return Value
String message or NULL if there is no error.

Example

sock type *socket;
char *p;

if(p = sockerr(socket) != NULL)
{
printf ("Error: %s\n", p);

}

Page 66 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sockstate

Syntax

char *sockstate (sock type *skType);

Parameters

skType Current socket Type that will be used to check the connection.

Description
This function returns ASCIl message indicating current state.

Return Value
String message.

Example

sock type *socket;
char *p;

if(p = sockstate(socket) != NULL)

{
printf ("State: %s\n", p);
}

ProSoft Technology, Inc. Page 67 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

gethostid

Syntax

char *gethostid (void);

Parameters

None

Description

This function returns value of the IP address in host format.

Return Value
String IP Address.

Example

sock type *socket;
char *p;

if (p = gethostid(socket) != NULL)
{

printf ("My IP: %s\n", p);
}

Page 68 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

6.4 ADMNET API Release Socket Functions

This section describes the ADMNET API Release Socket Functions.

sock_exit

Syntax

void sock exit(void);

Parameters

None

Description

This function is used by an application to release all the TCP/IP variables created
by sock_init.

Return Value

None

Example

sock exit();

See Also
sock_init (page 53)

ProSoft Technology, Inc. Page 69 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

sock_abort

Syntax

void sock abort(sock type *skType);

Parameters

skType Current socket Type that will be used to abort the connection.

Description

This function is used abort a connection. This function is common for TCP
connections.

Return Value
None

Example

sock type *socket;

sock abort (socket) ;

See Also

sock_close (page 71)

Page 70 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sock_close

Syntax

void sock close (sock type *skType);

Parameters

skType Current socket Type that will be used to close the connection.

Description

This function is used to permanently close a connection. This function is common
for UDP connections.

Return Value
None

Example

sock type *socket;

sock close (socket);

See Also
sock_abort (page 70)

ProSoft Technology, Inc. Page 71 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

6.5 ADMNET API Send Socket Functions
This section describes the ADMNET API Send Socket functions.

sock_write

Syntax

int sock write(sock type *skType, byte *data, int len);

Parameters

skType Socket that will be used to send data.

data Pointer to a buffer that contains data that will be sent to a server.
len Length of the data specified to send.

Description

This function writes data to the socket being passed to the function. The function
will wait until the all the data is written.

Return Value
Number of Bytes that are written to the socket or -1 if an error occurs.

Example

sock type *socket;
char theBuffer [512];
int len, bytes sent;

bytes sent = sock_write(socket, (byte*) theBuffer, len);

See Also
sock_fastwrite (page 73)

Page 72 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sock_fastwrite

Syntax

int sock fastwrite(sock type *skType, byte *data, int len);
Parameters
skType Current socket that will be used to send data.
data Pointer to a buffer that contains data that will be sent to a server.
len Length of data specified to send.
Description

This function writes data to the socket being passed to the function. The function
will not check to the data written out to the socket.

Return Value
Number of bytes that are written to the socket or -1 if an error occurs.

Example

sock type *socket;
char theBuffer [512];
int len, bytes sent;

bytes sent = sock fastwrite(socket, (byte*)theBuffer, len);

See Also

sock_write (page 72)

ProSoft Technology, Inc. Page 73 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

sock_flush

Syntax
void sock flush(sock type *skType);

Parameters

skType Current socket that will be used to flush all the data out of the buffer.

Description

This function is used to flush all the data that is still in the buffer out to the socket.
This function has no effect for UDP, since UDP is a connectionless protocol.

Return Value
None

Example

sock type *socket;

sock flush(socket); // Flush the output

See Also

sock_flushnext (page 75)

Page 74 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sock_flushnext

Syntax

void sock flushnext (sock type *skType);

Parameters

skType Current socket that will be used to flush all the data in the buffer out.

Description

This function is used after the write function is called to ensure that the data in a
buffer is flushed immediately.

Return Value
None

Example

sock type *socket;

sock flushnext (socket); // Flush the output

See Also
sock_flush (page 74)

ProSoft Technology, Inc. Page 75 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

sock_puts

Syntax

int sock puts(sock type *skType, byte *data);

Parameters

e Socket that will be used to put string data to.
data Pointer to the string that will be sent.
Description

This function sends a string to the socket. Character new line "\n", will be
attached to the end of the string.

Return Value
The length that is written to the socket.

Example

sock type *socket;
char data [512];
int len;

len = sock puts(socket, data);
printf ("Put %d\n", len);

See Also
sock_putc (page 77)

Page 76 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions
Developer Guide

PLX-ADMNET ¢ 'C' Programmable
Ethernet Module

sock_putc

Syntax

byte sock putc(sock type *skType, byte character);

Parameters

skType Socket that will be used to get string data from.
character A character that is used.

Description

This function is used to put one character at a time to the socket.

Return Value

Character put in is returned.

Example

sock type *socket;
char in;

in = sock putc (socket,
printf ("%c", in);

See Also
sock_puts (page 76)

ProSoft Technology, Inc.
February 20, 2013

Page 77 of 94

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

6.6 ADMNET API Receive Socket Functions

This section describes the ADMNET API Receive Socket functions.

sock_read

Syntax

int sock read(sock type *skType, byte *data, int len);

Parameters

skType Socket that will be used to receive data.

data Pointer to a buffer that contains data that is received.
len Length of the data specified to receive.

Description

This function reads data from the socket being passed to the function. The
function will wait until the all the data is read.
Return Value

Number of Bytes that are read to the socket or -1 if an error occurs.

Example

sock type *socket;
char theBuffer [512];
int len, bytes receive;

bytes_receive = sock read(socket, (byte*)theBuffer, len);

See Also

sock_fastread (page 79)

Page 78 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sock_fastread

Syntax

int sock fastread(sock type *skType, byte *data, int len);
Parameters
skType Current socket that will be used to receive data.
data Pointer to a buffer that contains data that is received to a server.
len Length of data specified to receive.
Description

This function reads data to the socket being passed to the function. The function
will not check to the data read into the socket.

Return Value
Number of bytes that are read to the socket or -1 if an error occurs.

Example

sock type *socket;
char theBuffer [512];
int len, bytes receive;

bytes receive = sock fastread(socket, (byte*)theBuffer, len);

See Also
sock_read (page 78)

ProSoft Technology, Inc. Page 79 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

tcp_listen

Syntax

int tcp listen(tcp Socket *sk, word lPort, longword ina, word port,
dataHandler t datahandler, word timeout);

Parameters

sk Pointer to the socket that has been initialized.

IPort Local port number.

datahandler Data Handler. Not used in this version. Use NULL for this parameter.

ina Host IP Address.

port Host port number.

timeout Value used to set the period of time to wait for data. O is set to indicate no
timeout.

Description

This function is used for listening to an incoming message. port is an option
parameter. Most of the time, port can be set to 0. The API will find an available
port number for the socket. ina is a host IP address passed as a longword.
Function resolve can be used to convert an IP address into a longword-formatted
variable. 0 can be passed as an ina value if there is no specific IP Address to
listen too.

Example

tcp Socket *socket;
int port = 5656;
tcp listen(socket, port, 0L, 0, NULL, 0);

See Also
ADM_send_socket (page 45)

Page 80 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sock_gets

Syntax

int sock gets(sock type *skType, byte *data, int len);

Parameters

skType Socket that will be used to get string data from.
data Pointer to the string return.

len Specified length for the function to get the string.
Description

This function is used for obtaining a string from the socket. The len parameter
specifies how long the string will be read.

Return Value
The length read from the socket is returned.

Example

sock type *socket;
char data [512];
int len;

len = sock gets(socket, data, 100);
printf ("Get %d\n", len);

See Also
sock_getc (page 82)

ProSoft Technology, Inc. Page 81 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

sock_getc

Syntax

int sock getc(sock type *skType);

Parameters

skType Socket that will be used to get string data from.

Description
This function gets one character at a time from the socket.

Return Value
Character read in is returned.

Example

sock type *socket;
char in;

in = sock getc(socket);
printf ("%c", in);

See Also
sock_gets (page 81)

Page 82 of 94 ProSoft Technology, Inc.
February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

sock_dataready

Syntax

int sock dataready(sock type *skType);

Parameters

skType Current socket that will be used to check if data is ready to be read.

Description

This function is used check if there is data ready to be read.

Return Value
Number of bytes ready to be read or -1 if error occurs.

Example
int in;
sock type *socket;

in = sock dataready (socket);
printf ("%d", in);

ProSoft Technology, Inc. Page 83 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable WATTCP API Functions
Ethernet Module Developer Guide

rip

Syntax

Char * rip(char *String);

Parameters

String Array of character string.

Description

This function is used to strip out carriage return and line feed. If there are more
than one carriage return or line feed, the first one will be replace with 0 and the
rest of them will not be defined.

Return Value

Pointer to the new string.

Example
char s;
s = sock dataready("This is a test\n\r");
printf ("%$s", s);
Page 84 of 94 ProSoft Technology, Inc.

February 20, 2013

WATTCP API Functions PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

inet_ntoa

Syntax

Char * inet ntoa(char *String, longword IP);

Parameters

String Array of character string.

IP Decimal representation of IP address.
Description

This function builds ASCII representation of an IP address with a user supply
string from decimal representation of the IP address. The size of the buffer has to
be at least 16 byte.

Return Value

Pointer to the new string.

Example
char buffer[20 1;

sock init();

printf ("My IP address is %s\n", inet ntoa(buffer, gethostid()));

ProSoft Technology, Inc. Page 85 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable
Ethernet Module

WATTCP API Functions
Developer Guide

inet_addr

Syntax

longword * inet addr(char *String);

Parameters

String Array of character string.

Description

This function converts string dot address to host format.

Return Value
Host IP address format.

Example
char buffer[] = "192.168.0.1";

sock init();

printf ("My IP address is %1d\n", inet addr(buffer));

Page 86 of 94

ProSoft Technology, Inc.
February 20, 2013

DOS 6 XL Reference Manual PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

7 DOS 6 XL Reference Manual

The DOS 6 XL Reference Manual makes reference to compilers other than
Digital Mars C++ or Borland Compilers. The PLX-ADM and ADMNET modules
only support Digital Mars C++ and Borland C/C++ Compiler Version 5.02.
References to other compilers should be ignored.

ProSoft Technology, Inc. Page 87 of 94
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable DOS 6 XL Reference Manual
Ethernet Module Developer Guide

Page 88 of 94 ProSoft Technology, Inc.
February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Glossary of Terms
Ethernet Module Developer Guide

8 Glossary of Terms

API
Application Program Interface

BIOS

Basic Input Output System. The BIOS firmware initializes the module at power
up, performs self-diagnostics, and provides a DOS-compatible interface to the
console and Flashes the ROM disk.

Byte
8-bit value

Connection

A logical binding between two objects. A connection allows more efficient use of
bandwidth, because the message path is not included after the connection is
established.

Consumer

A destination for data.

DLL
Dynamic Linked Library

Embedded I/O

Refers to any I/0 which may reside on a CAM board.
L

Library

Refers to the library file containing the API functions. The library must be linked
with the developer’s application code to create the final executable program.

ProSoft Technology, Inc. Page 89 of 94
February 20, 2013

Glossary of Terms PLX-ADMNET ¢ 'C' Programmable
Developer Guide Ethernet Module

Linked Library
Dynamically Linked Library. See Library.

Long
32-bit value.

Module
Refers to a module attached to the backplane.

Mutex
A system object which is used to provide mutually-exclusive access to a
resource.
T
Thread
Code that is executed within a process. A process may contain multiple threads.
w
Word
16-bit value
Page 90 of 94 ProSoft Technology, Inc.

February 20, 2013

PLX-ADMNET ¢ 'C' Programmable Support, Service & Warranty
Ethernet Module Developer Guide

9 Support, Service & Warranty

In This Chapter

% Contacting Technical SUPPOITc.oviiiiieiiiie e 91

s Warranty Information............eeeieeiiiiiiiicc e 92

9.1 Contacting Technical Support

ProSoft Technology, Inc. (ProSoft) is committed to providing the most efficient
and effective support possible. Before calling, please gather the following
information to assist in expediting this process:

1 Product Version Number
2 System architecture
3 Network details

If the issue is hardware related, we will also need information regarding:

Module configuration and associated ladder files, if any

Module operation and any unusual behavior

Configuration/Debug status information

LED patterns

Details about the serial, Ethernet or fieldbus devices interfaced to the module,
if any.

gaabhwNBEF

Note: For technical support calls within the United States, an after-hours answering system allows
24-hour/7-days-a-week pager access to one of our qualified Technical and/or Application Support
Engineers. Detailed contact information for all our worldwide locations is available on the following

page.

ProSoft Technology, Inc. Page 91 of 94
February 20, 2013

Support, Service & Warranty

PLX-ADMNET ¢ 'C' Programmable

Developer Guide Ethernet Module
Internet Web Site: www.prosoft-technology.com/support
E-mail address: support@prosoft-technology.com
Asia Pacific Tel: +603.7724.2080, E-mail: asiapc@prosoft-technology.com

9.2

(location in Malaysia)

Languages spoken include: Chinese, English

Asia Pacific
(location in China)

Tel: +86.21.5187.7337 x888, E-mail: asiapc@prosoft-technology.com
Languages spoken include: Chinese, English

Europe

(location in Toulouse,
France)

Tel: +33 (0) 5.34.36.87.20,
E-mail: support. EMEA@ prosoft-technology.com
Languages spoken include: French, English

Europe
(location in Dubai, UAE)

Tel: +971-4-214-6911,
E-mail: mea@prosoft-technology.com
Languages spoken include: English, Hindi

North America
(location in California)

Tel: +1.661.716.5100,
E-mail: support@prosoft-technology.com
Languages spoken include: English, Spanish

Latin America
(Oficina Regional)

Tel: +1-281-2989109,
E-Mail: latinam@prosoft-technology.com
Languages spoken include: Spanish, English

Latin America

(location in Puebla, Mexico)

Tel: +52-222-3-99-6565,
E-mail: soporte @prosoft-technology.com
Languages spoken include: Spanish

Brasil
(location in Sao Paulo)

Tel: +55-11-5083-3776,
E-mail: brasil@prosoft-technology.com
Languages spoken include: Portuguese, English

Warranty Information

Complete details regarding ProSoft Technology’s TERMS AND CONDITIONS
OF SALE, WARRANTY, SUPPORT, SERVICE AND RETURN MATERIAL
AUTHORIZATION INSTRUCTIONS can be found at www.prosoft-
technology.com/warranty.

Documentation is subject to change without notice.

Page 92 of 94

ProSoft Technology, Inc.
February 20, 2013

http://www.prosoft-technology/warranty
http://www.prosoft-technology/warranty

Index

PLX-ADMNET ¢ 'C' Programmable

Developer Guide Ethernet Module
Debug and Port 0 Jumpers « 9
Development Tools * 34
DLL « 89
DOS 6 XL Reference Manual « 87
I n d ex Downloading Files to the Module « 28
Downloading the Sample Program « 11, 21
E
A
ADM AP! » 35 Embedded I/0 « 89
: Ethernet tion « 1
ADM AP Files » 35 ernet Connection « 10
ADM Interface Structure * 36 G
ADM_close_sk « 42, 44 .
ADM_init_socket + 41, 43, 44 gethostid - 68
ADM _is_sk_open * 50 H

ADM_NET_GetVersioninfo * 49

ADM_open_sk * 42

ADM _receive_sk * 46, 48

ADM_receive_socket ¢ 45, 47
ADM_release_sockets * 41, 43

ADM_send_sk « 46

ADM_send_socket * 45, 47, 48, 80

ADMNET API Architecture * 35

ADMNET API Functions * 39

ADMNET API Initialize Functions * 41, 53
ADMNET API Miscellaneous Functions * 49
ADMNET API Receive Socket Functions « 47, 78
ADMNET API Release Socket Functions ¢ 43, 69
ADMNET API Send Socket Functions * 45, 72
ADMNET API System Functionality « 54

All ProLinx® Products * 2

APl « 89

API Libraries * 33

Application Development Function Library - ADMNET

APl + 39
B
BIOS + 89
Building an Existing Borland C++ 5.02 ADM Project ¢
22

Building an Existing Digital Mars C++ 8.49 ADM
Project * 12
Byte « 89

Calling Convention « 33

chk_timeout * 65

Configuring Borland C++5.02 « 21

Configuring Digital Mars C++ 8.49 « 11

Connection * 89

Connections * 9

Consumer ¢ 89

Contacting Technical Support « 91

Creating a New Borland C++ 5.02 ADM Project « 23

Creating a New Digital Mars C++ 8.49 ADM Project ¢
14

D
DB9 to Mini-DIN Adaptor (Cable 09) « 10

Header File « 34
I

Important Installation Instructions ¢« 2
inet_addr « 86

inet_ntoa ¢ 85

Introduction « 7

ip_timer_expired * 63

ip_timer_init » 62

J
Jumper Locations and Settings * 9

L
Library « 89
LIMITED WARRANTY « 92
Linked Library « 90
Long « 90

M
Module * 90
Multithreading Considerations ¢+ 34
Mutex « 90

O
Operating System ¢ 7

P

Package Contents * 9

Pinouts * 2, 10

PLX-ADMNET Communication Ports « 9
Preparing the PLX-ADMNET Module + 9
ProLinx Gateways with Ethernet Ports « 2

R

resolve * 55, 56, 57, 58, 59

rip « 84

RS-232 Configuration/Debug Port * 10
S

Sample Code « 34

ProSoft Technology, Inc.
February 20, 2013

Page 93 of 94

PLX-ADMNET ¢ 'C' Programmable Index
Ethernet Module Developer Guide

set_timeout * 64

Setting Up Your Compiler « 11
Setting Up Your Development Environment « 11
sock_abort « 70, 71
sock_close * 70, 71
sock_dataready * 83
sock_established ¢ 61
sock_exit * 53, 69
sock_fastread * 78, 79
sock_fastwrite ¢ 72, 73
sock_flush « 74, 75
sock_flushnext « 74, 75
sock_getc « 81, 82

sock_gets « 81, 82

sock_init + 53, 69

sock_mode ¢ 60

sock_putc * 76, 77

sock_puts * 76, 77

sock_read * 78, 79
sock_write ¢ 72, 73

sockerr * 66

sockstate ¢ 67

Support, Service & Warranty ¢« 91

T

tcp_listen « 80

tcp_open ¢« 55

tcp_open_fast « 56

tcp_tick « 54

Theory of Operation ¢ 35

Thread « 90

To upgrade a previously purchased Series C model: ¢

U

udp_open ¢ 57
udp_open_fast * 58
Understanding the PLX-ADMNET API « 33

W
WATTCP API Functions « 51
Word + 90

Y

Your Feedback Please * 3

Page 94 of 94 ProSoft Technology, Inc.
February 20, 2013

